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Abstract

Curriculum learning hypothesizes that presenting training samples in a meaningful

order to machine learners during training helps improve model quality and conver-

gence rate. In this dissertation, we explore this framework for learning in the context

of Neural Machine Translation (NMT). NMT systems are typically trained on a large

amount of heterogeneous data and have the potential to benefit greatly from curricu-

lum learning in terms of both speed and quality. We concern ourselves with three

primary questions in our investigation : (i) how do we design a task and/or dataset

specific curriculum for NMT training? (ii) can we leverage human intuition about

learning in this design or can we learn the curriculum itself? (iii) how do we featurize

training samples (e.g., easy versus hard) so that they can be effectively slotted into a

curriculum?

We begin by empirically exploring various hand-designed curricula and their effect

on translation performance and speed of training NMT systems. We show that these

curricula, most of which are based on human intuition, can improve NMT training

speed but are highly sensitive to hyperparameter settings. Next, instead of using
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a hand-designed curriculum, we meta-learn a curriculum for the task of learning

from noisy translation samples using reinforcement learning. We demonstrate that

this learned curriculum significantly outperforms a random-curriculum baseline and

matches the strongest hand-designed curriculum. We then extend this approach to

the task of multi-lingual NMT with an emphasis on accumulating knowledge and

learning from multiple training runs. Again, we show that this technique can match

the strongest baseline obtained via expensive fine-grained grid search for the (learned)

hyperparameters. We conclude with an extension which requires no prior knowledge

of sample relevance to the task and uses sample features instead, hence learning both

the relevance of each training sample to the task and the appropriate curriculum

jointly. We show that this technique outperforms the state-of-the-art results on a

noisy filtering task.
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Chapter 1

Introduction

The notion of a curriculum as it applies to human learning is a familiar one.

Most formal instruction employs this to impose structure upon the task of learning,

presenting concepts at different times and building upon existing knowledge to teach

more complex abstractions. As an example, in the case of adults learning a new

language, a human may be presented with the simplest nouns and verbs followed by

short phrases before being asked to learn to form complete sentences or tackle other

grammatical nuances (Richards, 1984). In the animal training literature, this concept

is known as shaping (Skinner, 1958; Peterson, 2004; Krueger and Dayan, 2009).

The idea of whether such a curriculum would be useful to machine learners was

first formally addressed by Bengio et al. (2009), who looked at the order of presenting

examples during training to simple neural networks for the task of shape recognition

and language modeling. They motivate and define this problem as:

1



CHAPTER 1. INTRODUCTION

Humans and animals learn much better when the examples are not ran-
domly presented but organized in a meaningful order which illustrates
gradually more concepts, and gradually more complex ones. Here, we
formalize such training strategies in the context of machine learning, and
call them (the task of designing the order of presentation) "curriculum
learning".

They defined the expected benefits from such a curriculum on machine learning

as, (i) improved speed of convergence of the training process and (ii) improved perfor-

mance and quality of the local minimum obtained post-training. Inspired by humans

and the way they learn, most initial research (including Bengio et al. (2009)) in this

field focused on presenting easy examples to the learning machine first and gradually

increasing their complexity during training1. This however, presents the following

questions:

Q1. What is an ideal curriculum for training a machine learning model and how

does this change based on the properties of the task and the dataset? Can the

curriculum itself be learned, instead of relying on hand-designed versions?

Q2. Do we expect human intuition about learning via curricula to translate to ma-

chine learning? Specifically, does training of models stand to gain (performance

or speed) from knowledge of how humans learn through gradual exposure from

easy to more complex examples?

Q3. How does one define the notion of an easy or hard example with respect to

the training of machine learning models? Do human-designed heuristics for
1A related approach was to start with a simple model and gradually increase the model complex-

ity/capacity as training went on.

2



CHAPTER 1. INTRODUCTION

Task Feature:Value Translation Pair (Source, Target)

Denoising
Noise:
Clean

Frau Präsidentin, zur Geschäftsordnung.
Madam President, on a point of order.

Noise:
Noisy

das Bild zeigt die originale Pfeife!
28 . November 2015

Domain
Adaptation
(Patent)

Domain:
Subtitles

是他完全迷上我了
Yeah, he totally has a crush on me.

Domain:
Patent

显示装置及显示系统
In-cell touch device and implementation method thereof

Multi-lingual
training

Language ID:
De->En

Sie engagieren sich wirklich für die Themen, die Sie bewegen.
You actually put action to the issues you care about.

Language ID:
Fr->En

Vous agissez en fait sur les questions qui vous intéressent
You actually put action to the issues you care about.

Table 1.1: Examples of heterogeneous translation pairs from various machine trans-
lation tasks.

determining sample difficulty work and is it possible to do away with the need

for such heuristics?

The work presented here attempts to seek answers to these questions in the context

of Neural Machine Translation (NMT) (Sutskever, Vinyals, and Quoc V Le, 2014).

Using artificial neural networks, NMT attempts to learn models which can trans-

late sentences (sequences of words) from one language (source) to another (target).

These models are hence referred to as translation models. NMT is a good test case

for curriculum learning, as training is very computationally expensive in large data

conditions required to reach good performance. As stated earlier, presenting the right

samples to the machine learner (NMT in this case) at the right time during (NMT)

training may help improve convergence speed of training. Additionally, training data

for large-scale NMT models are typically very heterogeneous (varying in characteris-

tics such as domain, translation quality, and degree of linguistic difficulty), are often
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derived from noisy web-crawls, and can contain hundreds of millions of sentence pairs

(see Table 1.1 for examples), not all of which may be useful or non-redundant. This

reinforces the idea that all training samples are not equal when translation perfor-

mance or training time is the metric to optimize. Finally, as with other machine

learning applications which encounter similar problems, some hand-designed curric-

ula have shown significant improvement in translation performance of NMT systems.

The most commonly encountered and extreme versions are data filtering (Moore and

William Lewis, 2010; Axelrod, He, and Gao, 2011b; Duh et al., 2013; Durrani et al.,

2016), only exposing the model to a selected portion of the dataset during training,

and fine-tuning (Luong and Manning, 2015; Freitag and Al-Onaizan, 2016), training

the model to convergence on one subset of the dataset and then further training this

(converged) model on another carefully chosen subset.

The questions (Q1-Q3) posed above with respect to curriculum learning in general

apply to NMT training quite naturally. First, given the scale and the heterogeneous

nature of the training data, it is hard to apply human intuition to design an optimal

curriculum. Most state-of-the-art NMT systems rely on the volume of the training

data or filtering heuristics to explain away the differences in the training samples.

Second, it is not clear how to quantify sample difficulty or usefulness to improve

translation performance. This problem is compounded by the fact that an NMT

model’s parameters change during training and a sample which may be considered

difficult to learn from at the beginning of training may not remain the same after a few
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model updates. The most commonly used proxies for sample difficulty rely on knowl-

edge from an auxiliary trusted model, linguistic features of the training sample, and

sentence-pair quality metrics. It is also unclear whether a single usefulness heuristic

is sufficient or if more than one should be used in a complementary manner. Third,

designing a optimal curriculum (the order in which examples are presented to the

NMT system), would involve a combinatorial search over all orderings of the training

data. This is obviously computationally intractable and a tractable way to search

over the space of orderings is required. Finally, NMT systems, for computational

reasons, already rely on established data organization methods e.g., sorting samples

to make sure samples in a mini-batch have roughly the same length, to deal with the

scale and varying length of training samples, and it is not clear how a curriculum

should interact with these existing design decisions.

In this dissertation, we conduct a systematic study of these issues related to cur-

riculum learning in the context of NMT training. We start in Chapter 3 by conducting

an empirical examination of various hand-designed curricula and their effect on trans-

lation performance and training speed of NMT systems. We explore difficulty criteria

based on auxiliary NMT model scores as well as linguistic properties. We consider

a wide range of schedules, based not only on the easy-to-difficult ordering, but also

on strategies developed independently from curriculum learning, such as dynamic

sampling and boosting (D. Zhang et al., 2017; Wees, Bisazza, and Monz, 2017a; R.

Wang, Utiyama, and Sumita, 2018). Using a probabilistic view of curriculum learning
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which can accommodate both fixed and dynamic curricula, we propose modifications

to the data sampling component of NMT training which are modular with respect

to the optimizer of the NMT system Our experiments on a German-English trans-

lation task confirm that curriculum learning can improve convergence speed without

loss of translation quality, and show that viewing curriculum learning more flexibly

than strictly training on easy samples first has some benefits. We also demonstrate

that hand-designed curricula are highly sensitive to hyperparameters, and no single

strategy emerges as clearly or uniformly the experiments.

Since designing and setting hyper-parameters to specify a curriculum is usually

a matter of extensive trial and error, automating this process with meta-learning2 is

an attractive proposition. Our next line of inquiry in Chapter 4, focuses on meta-

learning a curriculum for the task of training an NMT system on extremely noisy

French-English and German-English datasets. We attempt to match the performance

of a state-of-the-art non-trivial reference curriculum proposed by W. Wang, Watan-

abe, et al. (2018a), in which training gradually focuses on increasingly cleaner data,

as measured by an external scoring function. To effectively search through the large

space of possible curricula, we use a reinforcement-learning (RL) approach involving a

learned agent whose task is to select data representing a given noise level, at each NMT

training step to optimize eventual translation performance. We demonstrate that this
2We note that meta-learning is a loaded term in machine learning research. Recently, it has

been associated with model selection and hyperparameter tuning (e.g. autoML) of machine learning
models. Multi-task learning has also been framed as a meta-learning problem. In our work we focus
on methods which decide on which training samples are most appropriate to train on by a machine
learner given the task and the properties of the dataset.
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approach can learn a curriculum which significantly outperforms a random-curriculum

baseline and match the performance of the strongest hand-designed curriculum. Inter-

estingly, it does so using a different strategy from the best hand-designed curriculum.

Most hand-designed curricula do not change as the parameters of an NMT sys-

tem evolve during training. As stated earlier, this can be a disadvantage since the

optimal samples to expose the model to may change as it evolves. We address this

problem in chapter 5 to addressing this problem by learning time-varying curricula

from multiple NMT training runs. We do this in the context of multi-lingual NMT

training (an instance of multi-task training) where datasets from two language pairs,

Nepali-English and Hindi-English in our case, are used in conjunction to improve the

translation performance for one or both of the language pairs. We use pruned-tree

search and multi-arm bandits to learn these dynamic curricula. The task of the ban-

dit is to condition on the state of the NMT model and learn if it is appropriate to

expose the model to samples from one language pair or the other. Our experiments

show that these learned curricula can match the performance of the strongest fixed

curricula (obtained through a coarse and expensive grid search) but are themselves

computationally expensive to obtain, because effectively conditioning on temporal ob-

servations requires the multi-arm bandit to collect samples from many NMT training

runs.

As discussed earlier, determining sample usefulness for training can be a hard

task. Chapter 6 describes our effort to do away with an explicit notion of usefulness
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Sample Usefulness
metric

Time De-
pendent?

Curriculum
Type

Secondary
Task

Empirical Explo-
ration (Chap. 3)

Auxiliary model
scores, linguistic
features

No Hand-
Designed

Domain
Adaptation

RL-Q-Learning
(Chap. 4)

Noise CDS scores Yes Learned Denoising

Multi-lingual ban-
dits (Chap. 5)

Language ID Yes Learned from
multiple runs

Multi-lingual
translation

Reward modeling
(Chap. 6)

Learned based on
features

No Learned from
multiple runs

Filtering

Table 1.2: A summary of the work on learning curricula for NMT training.

and instead backs off to representing each sample as a set of features that may be

correlated to usefulness. Using feedback from the training of multiple NMT systems,

we instead learn an interpolation of the features which serves as a score to define a

fixed filtering-based curriculum. Hence, even though the type of the curriculum is

fixed in this case, its configuration which relies on the interpolated features is learned

and requires no prior knowledge about which features are informative or even if they

are mutually redundant. Our experiments, which apply this method to building NMT

systems for a noisy Estonian-English dataset, show that it outperforms a strong single-

feature filtering-curriculum and hand-designed feature interpolation. Additionally, we

show that this method is robust in the presence of the kinds of noise most prevalent

in web-crawled datasets.

Table 1.2 provides a summary of the work which appears in this dissertation. In

the next chapter, we start this investigation with a survey of prior work most closely

related to this dissertation.
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Chapter 2

Related Work

Curriculum Learning research has its roots in cognitive science, especially as it

relates to language learning in humans. One of the earliest lines of inquiry looked at

how presenting positive and negative samples affected language learners and whether

the order in which they are presented can affect learning itself (Gold, 1967; Baker,

1979; Bowerman, 1987; Pinker, 1989; Wexler and Cullicover, 1980). Building from

this Newport (1988), Newport (1990), and Plunkett and Marchman (1990) looked at

the effect of gradually increasing the size of the input data to learners during learning.

Meanwhile, Ash (1989), Fahlman and Lebiere (1990), and Shultz and Schmidt (1991)

were examining the effect of gradually increasing the size of learning models during

training. It is also worth noting that curriculum learning is a fairly prominent field

of inquiry in education research where it is also known as shaping (Skinner, 1958;

Peterson, 2004; Krueger and Dayan, 2009).
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In the field of machine learning, Elman (1993), Rohde and Plaut (1994), and

Krueger and Dayan (2009) first looked at the effect of starting small, that is, start-

ing learning with easier concepts and then gradually increasing the difficulty of the

concepts. Krueger and Dayan (2009) looked at the effect of gradually increasing

the capacity of machine learners during training while Sanger (1994) explored similar

frameworks in the field of robotics. Bengio et al. (2009) coined the term of curriculum

learning to generally refer to techniques which guide the training of learning systems

“by choosing which examples to present and in which order to present them in the

learning system”, and hypothesized that training on easier samples first is beneficial.

In their work, they improve neural language model training using a curriculum based

on increasing vocabulary size.

In the field on NLP, organizing training samples based on difficulty has shown

improvements in performance outside of neural models e.g., Spitkovsky, Alshawi,

and Jurafsky (2010) bootstrap unsupervised dependency parsers by learning from

incrementally longer sentences. Curriculum learning has also gained popularity to

address the difficult optimization problem of training deep neural models (Bengio,

2012). More recently, Tsvetkov et al. (2016) improve word embedding training using

Bayesian optimization to order paragraphs in the training corpus based on a range

of distributional and linguistic features (diversity, simplicity, prototypicality).

While curriculum learning often refers to organizing examples from simple to

difficult, other data ordering strategies have also been shown to be beneficial: Amiri,
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Miller, and Savova (2017) improve the convergence speed of neural models using

spaced repetition, a technique inspired by psychology findings that human learners

can learn efficiently and effectively by increasing intervals of time between reviews

of previously seen materials. Curriculum design is also a concern when deciding

how to schedule learning from samples of different tasks either in a sequence from

simpler to more difficult tasks (Collobert and Weston, 2008) or in a multi-task learning

framework (Graves, Bellemare, Menick, Rémi Munos, et al., 2017a; Kiperwasser and

Ballesteros, 2018b).

In the sub-field of Neural Machine Translation (NMT), the exploration of cur-

riculum learning is in its infancy. In practice, training protocols randomize the order

of sentence pairs in the training corpus (Sennrich, Firat, et al., 2017; Hieber et al.,

2017). There are works that speed training up by batching the samples of similar

lengths (Khomenko et al., 2016; Doetsch, Golik, and Ney, 2017). Such works attempt

to improve the computational efficiency, while curriculum learning is supposed to im-

prove the statistical efficiency — fewer batches of training examples are needed to

achieve a given performance.

Kocmi and Bojar (2017) conducted the first study of curriculum learning for NMT

by exploring the impact of several criteria for curriculum design on the training of a

Czech-English NMT system for one epoch. They ensure samples within each mini-

batch have similar linguistic properties, and order mini-batches based on complexity.

They show translation quality can be improved by presenting samples from easy to
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hard based on sentence length and unigram frequency.

Previous work has also investigated dynamic sampling strategies, emphasizing

training on samples that are expected to be most useful based on model scores or

domain relevance. Inspired by boosting (Schapire, 2002), D. Zhang et al. (2017)

assign higher weights at each epoch to training examples that have lower perplexities

under the model of the previous epoch. Similarly, Wees, Bisazza, and Monz (2017a),

and R. Wang, Utiyama, and Sumita (2018) improve the training efficiency of NMT by

dynamically selecting different subsets of training data between different epochs. The

former perform this dynamic data selection according to domain relevance (Axelrod,

He, and Gao, 2011a) while the latter use the difference between the training costs of

two iterations.

There have been several efforts to specifically derive hand-designed curricula for

the task of dealing with heterogeneous data, a typical characteristic of the data avail-

able for training NMT systems. The current approaches fall under two broad (but

related) categories depending on whether we choose to use all of the available train-

ing data or only a part of it. Data Selection considers the problem of finding the a

subset of the training data to train on with the aid of an auxiliary model which is

closer to dataset with known characteristics of interest (Moore and William Lewis,

2010; Axelrod, He, and Gao, 2011b; Duh et al., 2013; Durrani et al., 2016). Curricu-

lum based approaches hand-design an ordering over samples to determine how they

are presented to the NMT model during training. The current state-of-the-art NMT
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systems typically fall in the latter category.

For training on noisy data, W. Wang, Watanabe, et al. (2018a) propose an ap-

proach which begins training on all of the available data and gradually eliminates

noisy samples so that we end up training on a clean subset of the training data.

Wees, Bisazza, and Monz (2017b) had previously proposed a similar approach for the

task of domain adaptation for NMT. Jean, Firat, and M. Johnson (2018) propose

explicit curricula for multilingual NMT training. Continued training (also known as

fine-tuning) (Luong and Manning, 2015; Freitag and Al-Onaizan, 2016) is another

popular curriculum-based approach when we have a small amount of training data

with the attribute of interest. For example, in the case of domain adaptation, the

approach is to train on the large out-of-domain subset of the training data to con-

vergence and then train on the small in-domain subset. Previous work on dealing

with heterogeneous data in NMT includes approaches that modify parts of the model

(Dakwale and Monz, 2017; Kobus, Crego, and Senellart, 2016; Britz, Q. Le, and

Pryzant, 2017). Broadly construed, it extends also to multi-task (Kiperwasser and

Ballesteros, 2018a) and multilingual (M. Johnson, Schuster, Quoc V Le, et al., 2017a;

Gu et al., 2018) scenarios.

Instance weighting (Matsoukas, Rosti, and B. Zhang, 2009; Shah, Barrault, and

Schwenk, 2010; Foster, Goutte, and Kuhn, 2010; R. Wang, Utiyama, L. Liu, et

al., 2017) is another instance of curriculum-based approaches where each sentence

is weighted based on predefined functions, and this weight is incorporated into the
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training procedure or is used to determine how the instances are sampled.

Techniques that re-weight (B. Chen et al., 2017) or re-order examples to deal with

domain mismatch (Wees, Bisazza, and Monz, 2017b; Sajjad et al., 2017) or noise (W.

Wang, Watanabe, et al., 2018a) are also related to this work. Additionally, recent

work has explored bandit optimization for scheduling tasks in a multi-task problem

(Graves, Bellemare, Menick, Rémi Munos, et al., 2017b), and reinforcement learning

for selecting examples in a co-trained classifier (J. Wu, Li, and W. Y. Wang, 2018).

Techniques related to active learning are also relevant to this work. A typical setting

for active learning for NMT is as follows: given a pool of unlabeled (monolingual)

source text, we need to find the most useful sentences to query their translation from

an oracle. In our setting, this setting could be modified to instead select the most

useful sentences which optimize translation quality. M. Liu, Buntine, and Haffari

(2018) and Peris and Casacuberta (2018) apply imitation learning in an active learning

framework to actively select monolingual training sentences for labeling in NMT, and

show that the learned strategy from one language-pair can be transferred to a related

language-pair.

Filtering and denoising are two simple and popular curriculum-based approaches

which have shown consistent utility in NMT training (speed and quality). These

mostly focus on pre-filtering using hand-crafted rules and on using sentence pair

scoring and filtering methods. Deterministic hand-crafted rules (Hangya and Fraser,

2018; Kurfalı and Östling, 2019) remove sentence pairs with extreme lengths, unusual
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sentence length ratios and exact source-target copies, and are extremely effective in

removing most of the obvious extraction errors in automatically extracted datasets.

Automatic sentence pair scoring functions have been used successfully to filter noisy

corpora as well. This includes the use of language models (Rossenbach et al., 2018),

neural language models trained on trusted data (Junczys-Dowmunt, 2018) and lexical

translation scores (González-Rubio, 2019). Chaudhary et al. (2019) propose the use of

cross-lingual sentence embeddings for determining sentence pair quality while several

efforts (Kurfalı and Östling, 2019; Soares and Costa-jussà, 2019; Bernier-Colborne

and Lo, 2019) have focused on the use of monolingual word embeddings. Parcheta,

Sanchis-Trilles, and Casacuberta (2019) use a machine translation system trained on

clean data to translate the source sentences of the noisy corpus and evaluate the

translation against the original target sentences using BLEU scores. Erdmann and

Gwinnup (2019) and Sen, Ekbal, and Bhattacharyya (2019) propose similar methods

using METEOR scores and Levenshtein distance respectively. Rarrick, Quirk, and

Will Lewis (2011), Venugopal et al. (2011) and Antonova and Misyurev (2011) present

techniques for detecting machine translated sentence pairs in corpora. Tools such

as LASER (Schwenk and Douze, 2017), BiCleaner (Sánchez-Cartagena et al., 2018)

and Zipporah (Xu and Koehn, 2017) have been used (Chaudhary et al., 2019) for

noisy corpus filtering. Curriculum learning has been used to obtain policies for data

selection that can expose the model to noisy samples less often during training (W.

Wang, Watanabe, et al., 2018b; G. Kumar, Foster, et al., 2019). More recently,
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ElNokrashy et al. (2020) and Esplà -Gomis et al. (2020) have used classifier based

approaches to filtering noisy parallel data.

In recent work related to curriculum learning, Zhou et al. (2020) use the training

model’s cross-entropy for a sample as a proxy for its difficulty for the task while X.

Liu et al. (2020) use the norm of the word embeddings of a sentence as a difficulty

measure. W. Wang, Caswell, and Chelba (2019) use an expectation maximization

style procedure for learning dynamic data selection policies for training with noisy

data. X. Wang et al. (2019) use a reinforcement learning framework to learn a reward

model as a function of the training data and show gains on machine translation tasks.

Kreutzer and Riezler (2019) apply curriculum learning to an interactive sequence to

sequence learning problem while Wan et al. (2020) use self paced learning (M. Kumar,

Packer, and Koller, 2010) for designing NMT curricula.

Taken together, these prior works show that curriculum learning has the potential

to improve the training speed and quality of machine translation models. However,

especially for NMT, these curricula are hand-designed and extremely sensitive to

hyperparameters. Thus, meta-learning these curricula jointly with the task of training

the NMT system, can be an attractive proposition.
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Chapter 3

An Empirical Exploration of

Curriculum Learning for Neural

Machine Translation

Curriculum learning hypothesizes that choosing the order in which training sam-

ples are presented to a machine learner can increase performance of the learned model

on the chosen task and improve training convergence speed. In particular, presenting

samples that are easier to learn from before presenting difficult samples is an intu-

itively attractive idea, which has been applied in various ways in Machine Learning

and Natural Language Processing tasks (Bengio et al., 2009; Tsvetkov et al., 2016;

Cirik, Hovy, and Morency, 2016; Graves, Bellemare, Menick, Rémi Munos, et al.,

2017a, inter alia). In addition, other human-learning derived concepts in designing

17



CHAPTER 3. EMPIRICAL EXPLORATION OF CURRICULUM LEARNING

curricula such as reinforcing via repetition may aid machine learning.

We start our study of curriculum learning by performing an extensive empirical

examination of various hand-designed curricula and their effect on translation perfor-

mance and training speed of NMT systems. While NMT systems may benefit from

improvement in either one of these aspects, designing a curriculum for NMT train-

ing can be a complex problem. As discussed in Chapter 1, even if we hand-designed

curricula based on the assumption that machines can learn in a manner similar to hu-

mans, we are left with the problem of quantifying sample difficulty or more generally,

usefulness.

In this chapter, we seek answers to the following questions:

1. Do hand-designed curricula derived from human intuition help train better

NMT systems faster? If so, is there a consistent best strategy?

2. Are there proxies for sample difficulty or usefulness which help?

We adopt a probabilistic view of curriculum learning that lets us explore a wide

range of curricula flexibly. Our approach does not impose deterministic selection from

samples. Instead, each sample has a probability of being selected for training, and this

probability changes depending on the difficulty of the sample and on the curriculum’s

schedule. This framework allows us to work with both deterministic and stochastic

curricula. We explore difficulty criteria based on auxiliary NMT model scores as well

as linguistic properties. We consider a wide range of schedules, based not only on
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the easy-to-difficult ordering, but also on strategies developed independently from

curriculum learning, such as dynamic sampling and boosting (D. Zhang et al., 2017;

Wees, Bisazza, and Monz, 2017a; R. Wang, Utiyama, and Sumita, 2018).

We begin by describing our probabilistic approach to curriculum learning. Next,

we examine auxiliary model-based and linguistic criteria for determining sample use-

fulness. Using these, we proceed to look at various hand-designed curricula, building

upon previous work in curriculum learning. We apply these to the task of learning

on a German-English translation task and examine if these curricula can improve

convergence speed without loss in translation quality. We conclude by analyzing the

trends from applying hand-designed curriculum learning to NMT and by summariz-

ing our findings. The work described below appears in X. Zhang, G. Kumar, et al.

(2018)1 and X. Zhang, Shapiro, et al. (2019).

3.1 A Probabilistic View of Curriculum Learn-

ing

Let (x, y) be a bitext example, where x is the source sentence and y is the target

reference translation. We use subscripts i to denote the sample index and assume a

training set D = {(xi, yi)}i=1,2,...S of size S. Curriculum learning can then be formu-
1The author of this dissertation participated in the conception of this approach, designing and

running experiments and writing this paper along with the co-authors on this paper. This work was
performed by a team of researchers (co-authors on the paper) at the Machine Translation Marathon
2018 in Pittsburgh.
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lated in a probabilistic manner, where each sentence pair (xi, yi) has a probability of

being selected for training, and this sampling probability changes depending on the

difficulty of the example and the curriculum schedule (Bengio et al., 2009).

Specifically, we divide the curriculum schedule into distinct phases t which cor-

respond to different time points during training. For instance, t = 1 could be the

first N checkpoints, t = 2 is the next N checkpoints, etc. The definition of phases

is flexible: alternatively t = 1 may correspond to the first epoch, and t = 2 may

correspond to the second epoch (or more). At each phase t, we maintain a multino-

mial distribution qti over the examples in D, where qti ≥ 0 ∀i and
∑︁S

i=1 q
t
i = 1. To

implement the curriculum schedule that begins with easy examples, we would start at

t = 1 by setting qti to be high for easy examples and qti to be low (or zero) for difficult

examples. Gradually, for large t, we increase qti for the more difficult examples. At

some point, all examples have equal probability of being selected; this corresponds to

the standard NMT training procedure. An illustration of this probabilistic view of

curriculum learning is shown in Figure 3.1.

There are two advantages to this probabilistic sampling view of curriculum learn-

ing:

1. It is a flexible framework that enables the design of various kinds of curriculum

schedules. By specifying different kinds of distributions, one can perform easy-

to-difficult training or the reverse difficult-to-easy training. One can default to

uniform sampling, which corresponds to standard training with random mini-
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Figure 3.1: Probabilistic view of curriculum learning: On the x-axis, the examples are
arranged from easy to difficult. y-axis is the probability of sampling the example for
training. By specifying different kinds of sampling distributions at different phases,
we can design different curriculums. In this example, t = 1 samples from the first
three examples, t = 2 includes the remaining two examples but at lower probability,
and t = 3 defaults to uniform sampling (regardless of difficulty).

batches. Many of these variants are described in Section 3.3.2. Additionally,

this framework will serve us in subsequent chapters where we explore curricula

that are learned from scratch.

2. It is simple to implement in existing deep learning frameworks, requiring only a

modification of the data sampling procedure. In particular, it is modular with

respect to the optimizer’s learning rate schedule and mini-batch shuffling mech-

anism; these represent best practices in deep learning, and may be suboptimal

if modified. Further, the optimizer only needs access to sampling probability qti ,

which abstracts away from the various selection criteria such as sentence length

and vocabulary frequency (to be described in Section 3.2). This enables us to
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plug-in and experiment with many criteria.

Without loss of generality, in practice we group examples into shards (Figure 3.2)

such that those in the same shard have similar difficulty criteria.2 Then we define the

sampling distributions over shards rather than examples. Since there are fewer shards

than examples (e.g., 5 shards vs. 1 million examples for a typical-sized dataset), the

distributions are simple to design and visualize. Sharding is described in more detail

in Section 3.3.1.

easy medium hard

0 1 2 3 4

Figure 3.2: Training data organized by level of difficulty. Each block is a shard (i.e.,
a subset of the dataset) and darker shades indicate increasing difficulty. Note that
the width of each patch does not indicate the number of samples in that shard, as it
may vary for different difficulty criteria.

3.2 Sample Difficulty Criteria

In this work, we quantify the translation difficulty of a sentence pair (training

sample for NMT systems) by two kinds of criteria (or scores): 1) how well an auxiliary

translation model rates the pair and 2) linguistic features which are orthogonal to any

translation model.
2Shards are not to be confused with buckets (grouping of similar-length samples). Shards are

simply subsets of the training data and may allow for bucketing by length within themselves.
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3.2.1 Model-based Difficulty Criteria

Given a training sample (x, y) its one-best score is the probability of the one-

best translation (the product of its word prediction probabilities) from an auxiliary

(possibly simpler) translation model, given a source sentence. This represents p(ŷ | x)

which is the probability of the one-best translation ŷ given the source sentence x, as

specified by the auxiliary model. A high one-best score for a translation suggests that

the auxiliary model is very certain of its prediction with a small chance of choosing

other candidates. Although the prediction might not be the “correct answer", p(ŷ | x)

represents the confidence of the model for that prediction, and indicates how easy the

prediction is according to the auxiliary translation model.

3.2.2 Linguistic Difficulty Criteria

Linguistic features, including sentence length and vocabulary frequency, can also

be used to measure the difficulty of translating a sample (Kocmi and Bojar, 2017).

Short sentences usually do not have difficult syntactic structures, while lengthier

sentences with long-distance dependencies are difficult to handle for NMT models

(Hasler et al., 2017). To capture this phenomenon, we rank samples by the lengths

of the source and target sentences and by the sum of the length of each sentence in

the pair.

Sutskever, Vinyals, and Quoc V Le (2014) show that a NMT model’s performance
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decreases on sentences with more rare words. Similar to Kocmi and Bojar (2017),

we first sort words by their frequency to get the word frequency rank, then order

sentences based on the rank of the least frequent word in the sentence (max word

frequency rank). Organizing sentences by this criterion is equivalent to gradually

increasing the vocabulary size and training on sentences that only contain words

in the current partial vocabulary (Bengio et al., 2009). In addition to this, we also

experimented with the average word frequency rank. Again, we collect word frequency

rank scores for source sentences, target sentences and concatenations of both3.

3.3 Methods

Having defined criteria for measuring sample difficulty and illustrated how they

can be used in a probabilistic curriculum learning framework, we now describe in more

detail how this framework was instantiated for our study. We present our approach

for organizing data into shards given sample difficulty scores (Section 3.3.1), how the

shards are used by the curriculum schedule (Section 3.3.2), and how this fits in the

overall training strategy (Section 3.3.3).
3In the concatenation, the word rank is obtained based on whether the word belongs in the source

or the target; i.e., we maintain separate word frequency lists for each language.
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3.3.1 Data Sharding

As described in section 3.1, samples are grouped into shards of similar difficulty

(Figure 3.2). This can be done by various methods. One approach is to set thresholds

on the difficulty score (Kocmi and Bojar, 2017). An alternative is to distribute

the data evenly such that each shard will have same number of samples. The first

approach makes it difficult to choose reasonable breaks while trying to ensure that

each shard has roughly the same number of samples (Figure 3.3). In contrast, the

latter may result in unwanted fluctuations in difficulty within the same shard, and

not enough difference between different (especially adjacent) shards.
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Figure 3.3: Difficulty score distribution on DE-EN TED Talks training set (151,627
sentence pairs in total) scored by three different difficulty criteria mentioned under the
x-axis. Sharding results generated from Jenks Natural Breaks classification algorithm
are shown below each subplot, in the ascending order of difficulty levels.

We instead use the Jenks Natural Breaks classification algorithm (Jenks, 1997),

an algorithm commonly used in Geographic Information Systems (GIS) applications

(Brewer, 2006; Chrysochoou et al., 2012). This method seeks to minimize the vari-

ance within classes and maximize the variance between classes. Figure 3.3 shows
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examples of the univariate classification results using Jenks algorithm on our training

corpus (TED Talks, Duh (2018)) where training samples are reorganized by three

criteria (one-best score, source sentence length and source max word frequency rank)

representing difficulty (see Section 3.2). Distributions obtained for other complexity

criteria are available in the supplementary material.

3.3.2 Curriculum Schedule

The curriculum’s schedule defines the order in which samples of different difficulty

classes are presented to the learning system. A curriculum’s phase is the period

between two curriculum updates.4 For NMT models, it is natural to consider the

idea of first presenting easy samples to the models. In the following sections, we refer

to this as the default schedule. We also introduce four variants of the default schedule

(Figure 3.4) which lets us explore different trade-offs.

• default Shards are sorted by increasing level of difficulty. Training begins with

the easiest shard and harder shards are included in subsequent phases.

• reverse Shards are sorted in descending order of difficulty. Training begins

with the hardest shard and easier shards are included in subsequence phases.

• boost A copy of the hardest shard is added to the training set, after the model

has processed shards of all difficulty classes.
4This is similar to the concept of an epoch except that only a subset of the training data may be

available based on the curriculum’s schedule.
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... till converged

(a) default       

... till converged

(b) reverse       

... till converged

(c) boost    

... till converged

(d) reduce        

Figure 3.4: Training with different curriculum schedules. The colored blocks are
shards of different difficulty levels (see figure 3.2). Within a sub-figure, each row rep-
resents a phase, and shards in that row are accessible shards based on the curriculum.
Training starts from the first row and goes through the following rows in succession.
Hence, at each phase only subsets of the training data and certain difficulty classes are
available. Note that shards (and the samples within them) are shuffled as described
in Section 3.3.3.

• reduce Once all shards have been visited, we start removing shards from train-

ing, one shard at the end of each phase, starting with the easiest. Once a fixed

number of shards have been removed (2 in our case), we add them back. This

reduce and add-back procedure will be iteratively continued until the training

converges. The effect is that the model gets to look at harder shards more often.
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• noshuffle Same as default except that shards are never shuffled; that is, they are

always presented to the model in ascending order of difficulty (Samples within

shards are shuffled as usual).

The reverse schedule tests the assumption that presenting easy examples first

helps learning. It remains unclear if we should start with the easier sentences and

move to more difficult ones, or if perhaps some of the difficult sentences are too hard

for the model to learn and we should focus on straightforward sentences at the end.

In addition, we are unsure of what the model will find more easy or difficult.

Another open question is whether presenting shards randomly during each cur-

riculum phase (as done in the default schedule) weakens the curriculum. We explore

an alternative by forcing the shard visiting order to be deterministic — always start-

ing from the easiest shard, ending at the hardest shard for this phase. We label this

schedule as noshuffle, since shuffling does not occur. Noshuffle may be helpful in the

sense that every time the model is assigned with a new harder shard, it will review

old shards in a more organized way. This method can be viewed as restarting the

curriculum at each phase.

The last two schedules are adapted from D. Zhang et al. (2017), who improve

NMT convergence speed by duplicating samples considered difficult based on model

scores. The boost schedule combines the idea of training on easy samples first (from

default), while putting more emphasis on difficult samples (as in reverse). The reduce

schedule additionally makes sure that the model gets to look at difficult shards more
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often. This is accomplished by periodically removing easy shards from epochs, and

adding them back again later, also periodically.

3.3.3 Training Strategy

Finally, we address the question of how to draw mini-batches from the training

data which has been sharded based on difficulty. Current state-of-the-art NMT model

implementations bucket the training samples based on source and target length. Mini-

batches are then drawn from these buckets, which are shuffled at each epoch. One

way of drawing mini-batches while conditioning on difficulty is to sort the training

samples by difficulty and to then draw these deterministically starting from the easiest

to the most difficult sample. However, this loses the benefits gained by shuffling the

data at each epoch.

Instead, our work uses a strategy similar to the work of Bengio et al. (2009).

We organize samples into shards5 according to the univariate classification results

(Section 3.3.1) and allow further bucketing by sentence length within each shard.

Samples within each shard are shuffled at each epoch, ensuring that we draw random

mini-batches of the same difficulty.

Given shards of different difficulty levels, we follow these steps for training:

• The curriculum’s schedule defines which shards are available for training. We

call these the visible shards for this phase of NMT training.
55 shards in our experiments.
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• These shards are then shuffled (except when we use the noshuffle schedule)6 so

that the model is trained using random levels of difficulty (in contrast to always

using easy to hard).

• The samples within each shard are shuffled and bucketed by length. Mini-

batches are drawn from these buckets.

• When the curriculum update frequency is reached (defined in terms of number

of batches), the curriculum’s schedule is updated. For example, this may imply

that we include more difficult shards in training in the next phase or eliminate

an existing shard. In cases where the total number of examples in these shards

is smaller than the curriculum update frequency, we repeat the previous step

until the update frequency has been achieved.

• After all available shards have been exposed to the model, training continues

until validation perplexity does not improve for 32 checkpoints. The NMT

model has then converged.
6In shuffling, we ensure that the first shard for this phase is not the same as the last shard from

the last phase.
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3.4 Experiment Setup

3.4.1 Data

All experiments in this study were conducted on the German(de)-English(en)

parallel dataset (de-en) from the Multi-target TED Talks Task (MTTT) corpus (Duh,

2018). The train portion consists of about 150k parallel sentences while the dev and

test subsets have about 2k sentences each. All subsets were tokenized and split

into subwords using byte pair encoding (BPE) (Sennrich, Haddow, and Birch, 2016).

The BPE models were trained on the source and target language separately and the

number of BPE symbols was set to 30k per language.

3.4.2 NMT Setup

The neural machine translation models were trained using Sockeye7 (Hieber et

al., 2017). We used 512-dimensional word embeddings and one LSTM layer in both

encoder and decoder. We used word-count based batching (4096). Our systems

employed the Adam optimizer (Kingma and Ba, 2014) with an initial learning rate

of either 0.0002 or 0.0008 (see Section 3.5). The dev set from the corpus was used as

a validation set for early stopping.

The baseline is an NMT model with the structure and hyperparameters described

above without a curriculum; that is, it has access to the entire training set which
7github.com/awslabs/sockeye
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is bucketed by length to then create mini-batches. Training data are split randomly

into the same number of shards as the curriculum models (5 here).

We build the auxiliary model for the use of generating one-best score for each

training sample, with similar but simpler configurations compared to the baseline

model, in terms of number of RNN hidden units (200 vs. 512). While the training

time for this specific model may cancel out the time saved by curriculum learning in

practice, having a high-quality one-best score provides a useful reference point for our

understanding of curriculum learning.

3.4.3 Curriculum Learning Setup

The curriculum learning framework as described in Section 3.3 was implemented

within Sockeye. Curriculum learning can be enabled as an alternative to default train-

ing within Sockeye by specifying a file which contains sentence level scores (difficulty

ranking per sentence with respect to any criterion). This implementation leverages

the Sockeye sharding feature, which was originally meant for data parallelism. The

codebase is publicly available with our experimental settings and tutorials8.

We set the curriculum’s update frequency to 1000 batches, which is the same as

our checkpoint frequency.
8https://github.com/kevinduh/sockeye-recipes/tree/master/egs/curriculum
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3.5 Results
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Figure 3.5: Learning curves for the first 7 curriculum updates. The NMT model
is trained on data organized by the avg word freq rank (de) difficulty criterion with
different curriculum learning schedules.

We start by examining training behavior during early training stages. Figure 3.5

shows the learning curves (validation BLEU9 vs checkpoints) for the first 7 check-

points10 of curriculum training. The curriculum is updated at each checkpoint using

one of the schedules listed in section 3.3.2. With the smaller learning rate, all cur-

ricula improve over baseline validation BLEU at the 7th checkpoint. However, with

the higher learning rate, only the reverse schedule outperforms the baseline. Similar

trends are observed with other difficulty criteria:11 a few curriculum schedules beat
9BLEU is the standard evaluation for machine translation based on n-gram precision; higher is

better (Papineni et al., 2002).
107 is the lowest number of checkpoints required to discriminate between the different schedules.
11All learning curves available in the appendix (Chapter 8)
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the baseline but this outcome is sensitive to the initial learning rate.

Training Time (thousand batches)
baseline 73

default reverse boost reduce noshuffle
one-best score 56 80 59 64 92
max wd freq(de) 57 88 89 82 77
max wd freq(en) 63 77 75 64 98
max wd freq(de-en) 56 61 62 59 62
ave wd freq(de) 72 69 57 73 108
ave wd freq(en) 84 66 61 61 64
ave wd freq(de-en) 62 57 84 85 67
sent len(de) 78 118 67 56 83
sent len(en) 151 59 67 125 196
sent len(de-en) 113 189 79 68 195

Test BLEU (best)
baseline 28.1

default reverse boost reduce noshuffle
one-best score 27.0 27.9 28.4 27.3 27.4
max wd freq(de) 25.2 26.1 27.4 27.2 28.1
max wd freq(en) 27.6 25.3 27.5 26.9 27.6
max wd freq(de-en) 28.1 27.5 27.8 27.7 28.5
ave wd freq(de) 28.2 28.5 27.3 26.5 28.2
ave wd freq(en) 27.8 25.4 27.4 25.8 27.9
ave wd freq(de-en) 27.3 27.4 28.3 26.9 28.2
sent len(de) 26.6 28.1 27.2 26.4 27.6
sent len(en) 27.6 25.1 25.6 27.1 27.7
sent len(de-en) 27.0 26.3 26.3 23.9 27.7

Table 3.1: Performance of curriculum learning strategies with initial learning rate
0.0002. Training time is defined as in Table 3.3. Bold numbers indicate models that
win on training time with comparable (difference is less or equal to 0.5) or better
BLEU compared to the baseline.

When training until convergence (Tables 3.1-3.2), 20 of 100 curriculum strategies

successfully converge earlier than the baseline without loss in BLEU. The model

trained with the average source word frequency as a difficulty criterion and the reverse

schedule improves training time by 19% to 30%.12 However, the optimal curriculum
12These are substantial time savings given that training the baseline took up to 1 day.

34



CHAPTER 3. EMPIRICAL EXPLORATION OF CURRICULUM LEARNING

Training Time (thousand batches)
baseline 79

default reverse boost reduce noshuffle
one-best score 59 69 48 92 112
max wd freq (de) 85 103 69 118 43
max wd freq (en) 148 80 166 49 158
max wd freq (de-en) 84 61 75 67 93
ave wd freq (de) 79 51 73 88 58
ave wd freq (en) 72 71 146 61 74
ave wd freq (de-en) 81 47 54 58 71
sent length (de) 49 126 88 85 74
sent length (en) 101 52 70 49 114
sent length (de-en) 155 148 170 95 86

Test BLEU (best)
baseline 29.95

default reverse boost reduce noshuffle
one-best score 30.1 29.9 28.3 28.9 30.4
max wd freq (de) 25.9 29.6 30.7 25.8 29.6
max wd freq (en) 27.0 29.6 28.4 29.5 29.9
max wd freq (de-en) 29.5 31.5 31.1 27.9 27.2
ave wd freq (de) 27.3 30 27.6 27.1 21.3
ave wd freq (en) 29.9 28.4 23.3 25.2 29.4
ave wd freq (de-en) 29.9 28.4 28.5 28.3 29.3
sent length (de) 27.0 30.3 29.3 27.8 31.0
sent length (en) 29.0 27.6 24.2 26.9 30.2
sent length (de-en) 29.4 30.7 30.5 29.6 29.5

Table 3.2: Performance of curriculum learning strategies with initial learning rate
0.0008.

schedule for other complexity criteria change with the initial learning rate. The model

trained with the one-best score and the boost schedule converges after processing 19%

fewer mini-batches than the baseline (59,000 vs. 73,000) and yields a comparable

BLEU score (28.4 vs. 28.1) with an initial learning rate of 0.002. With a higher

initial learning rate, this configuration also speeds up training by 38% (48,000 vs.

79,000) but at the cost of a 1.65 point degradation in BLEU. The default schedule

yields better results with the learning rate of 0.0008 but not 0.0002.
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Comparing trends across complexity criteria shows there is no clear benefit to

the expensive one-best model score compared to the simpler word frequency criteria.

Sentence length is not a useful criterion: it helps convergence time only slightly (74,000

vs. 79,000) and in only one of the ten configurations we run. This is a surprising

result at first, given that both sentence length and word frequencies were found to be

useful ordering criteria by D. Zhang et al. (2017). However, their experiments are not

directly comparable. They were limited to a single training epoch and use a different

training strategy, which is closest to our noshuffle schedule. With that schedule,

the German-English (de-en) sentence length curricula also outperform the baseline

in early training stages, but the baseline catches up and outperforms by convergence

time. We also note that the conclusions about the reduce stated by D. Zhang et al.

(2017) do not hold true for our dataset and curriculum schedules. Specifically, this

schedule provides no improvement in training time. (Table 3.1 and 3.2).

These results highlight the benefits of viewing curriculum learning broadly, and

of curriculum strategies beyond the initial “easy samples first” hypothesis. Interest-

ingly, the default and reverse schedules can yield close performance, and forcing data

shards to be explored in order (noshuffle) does not improve over the default sampling

schedule.

Table 3.3 further illustrates how curriculum training in NMT is sensitive to hyper-

parameters. We change the curriculum update frequency (mini-batches) and notice

that while the validation set BLEU ramps up quickly, from 8.8 to 14.9, as the number
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Curr Update Time BLEU BLEU
Freq (thousand batches) (7) (best)
1000 108 8.8 28.2
2000 100 1.8 28.0
3000 71 9.2 28.2
4000 56 9.0 27.9
5000 108 14.9 28.0
6000 67 14.9 28.0

Table 3.3: Impact of curriculum update frequency on the model trained on default
schedule with data organized by avg word freq rank (de). Training time is quantified
as total number of mini-batches the NMT model has processed before convergence.
The initial learning rate is set to 0.0002. The last two columns show the decoding
performance of the model at 7th and the best checkpoint — the checkpoint at which
the model got highest BLEU score on val set.

of mini-batches is increased between curriculum updates, the convergence time shows

no clear trend and the validation BLEU at convergence is the same (ca. 28 BLEU).

To sum up, our experiments show that curriculum learning can improve conver-

gence speed, but the choice of difficulty criteria is key: vocabulary frequency performs

as well as the more expensive one-best score, and sentence length does not help be-

yond early training stages. No single curriculum schedule consistently outperforms

the others, and results are sensitive to other hyperparameters such as initial learning

rate and curriculum update frequency.

3.6 Synopsis

In this chapter, we conducted an empirical exploration of curriculum learning for

training neural machine translation systems and its impact on convergence speed and

quality on a German-English TED translation task. We adopted a probabilistic view

37



CHAPTER 3. EMPIRICAL EXPLORATION OF CURRICULUM LEARNING

of curriculum learning, implemented on top of a state-of-the-art NMT toolkit, in order

to enable a flexible evaluation of the impact of various curricula design.

We turn once again to the questions posed at the beginning of the chapter and

examine them in the context of the results provided by this exploration.

1. We examined several hand-designed curricula, including the popular easy-to-

hard (default) and its opposite, hard-to-easy (reverse), strategies which involve

repetition (boost and reduce). Our results demonstrate that curriculum learning

can be an effective method for training expensive models like those in NMT, as

20 of the 100 curricula tried improved convergence speed at no loss in BLEU.

2. We explored proxies for sample difficulty derived from auxiliary models and lin-

guistic difficulty (word frequency and sentence length). We conclude that the

choice of this difficulty criterion is key. No single curriculum schedule consis-

tently outperforms the others, and results are sensitive to other hyperparameters

such as initial learning rate and curriculum update frequency.

We note that while establishing an upper bound on performance for this task (an

oracle) may be required to calibrate these results, devising an oracle is not an easy

task. A naive approach would require searching through all possible (an exponential

number) of data orderings to find the optimal one. An alternative approach is to

synthetically add noise to some samples in the training dataset so that we have

a prior notion of which samples are useful and which are not13. We will explore
13This may not be strictly true, as some noisy samples may still be useful.
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these methods for determining oracles in the following chapters. Building upon these

conclusions, we attempt in the next chapter to learn an optimal curriculum for the

chosen NMT task, and compare the learned curriculum to hand-designed curricula as

baselines.
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Chapter 4

Reinforcement Learning based

Curriculum Optimization for Neural

Machine Translation

Machine Translation training data is typically heterogeneous: it may vary in

characteristics such as domain, translation quality, and degree of difficulty. Many

approaches have been proposed to cope with heterogeneity, such as filtering (Duh

et al., 2013) examples that are likely to be noisy or out of domain. Controlling the

curriculum — the order in which examples are presented to the system — as is done in

fine-tuning (Luong and Manning, 2015; Freitag and Al-Onaizan, 2016), where train-

ing occurs first on general data, and then on more valuable in-domain data, has shown

significant improvements in NMT training. Learning a curriculum could generalize
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data filtering and weighting by allowing examples to be visited multiple times or not

at all; and they additionally have the potential to steer the training trajectory to-

ward a better final model than might be attainable with a static attribute-weighting

scheme.

As we saw in the Chapter 3, devising a good curriculum is a challenging task that

is typically carried out manually using prior knowledge of the data and its attributes.

Although powerful heuristics like fine-tuning are helpful, setting hyper-parameters to

specify a curriculum is usually a matter of extensive trial and error. Automating

this process with meta-learning is thus an attractive proposition. However, it comes

with many potential pitfalls such as failing to match a human-designed curriculum,

or significantly increasing training time.

In this chapter we present an approach to meta-learning an NMT curriculum.

Starting from scratch, we attempt to match the performance of a state-of-the-art

(non-trivial) reference curriculum proposed by W. Wang, Watanabe, et al. (2018a),

in which training gradually focuses on increasingly cleaner data, as measured by an

external scoring function. Inspired by J. Wu, Li, and W. Y. Wang (2018), we develop

a reinforcement-learning (RL) approach involving a learned agent whose task is to

choose a corpus bin, representing a given noise level, at each NMT training step. A

challenging aspect of this task is that choosing only the cleanest bin is sub-optimal;

the reference curriculum uses all the data in the early stages of training, and only

gradually anneals toward the cleanest. Furthermore, we impose the condition that
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the agent must learn its curriculum in the course of a single NMT training run.

We demonstrate that our RL agent can learn a curriculum that works as well

as the reference, obtaining a similar quality improvement over a random-curriculum

baseline. Interestingly, it does so using a different strategy from the reference. This

result opens the door to learning more sophisticated curricula that exploit multiple

data attributes and work with arbitrary corpora. Portions of the work described

below appear in G. Kumar, Foster, et al. (2019). We begin by introducing our choice

of the reinforcement learning framework, deep Q-learning.

4.1 Background

Suppose we have an agent interacting with an environment which consists of finite

number of states s ∈ {s1, · · · , sm}. At each time step, t, receives information about

the state the environment is in and then chooses to execute an action at ∈ A, where

A is a finite set of actions {a(1), · · · , a(m)}. Based on this action, the agent receives a

reward (feedback) from the environment, rt. We wish to train the agent to maximize

the cumulative rewards which this agent receives over a time horizon. A popular

reinforcement learning framework to address this problem is Q-learning (Watkins and

Dayan, 1992) which learns a Q-table, a data structure which maps states and actions

to their expected rewards. Specifically, Q-learning estimates a Q-value (estimated

optimal future reward) for each state, action pair. At the beginning of training, the
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Q-values are set to zeroes, indicating that the model has no knowledge of transitions

in the environment. The model then proceeds to update these Q-values through

its interactions with the environment which yield the triples (st, at, rt) for each time

step, t. The choice of actions is dictated by an exploration strategy which balances

exploiting the Q-values from the model to determine the next action and exploration

which chooses the next action at random. After each time step, the Q-learning model

changes its estimates of the Q-values using the Bellman equation (Bellman, 1957)

which appears below.

Q(st, at) = (1− α)Q(st, at) + α(rt + λmax
a

Q(st+1,a)) (4.1)

where st and at are the state and action at time step t, rt is the reward received, α

is the learning rate and λ is the discount factor which balances how much we should

use immediate versus historical rewards.

Deep Q-learning (Mnih et al., 2015) extends this approach to continuous state

representations and uses deep neural networks to model Q-values instead of using a

Q-table. This model takes the state representation and input and provides Q-values

as output for every available action. Training of this network is performed using

the Bellman equation which appears above. Deep Q-learning typically also uses two

structurally identical networks, the target and the main to model Q-values. The
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Figure 4.1: The agent’s interface with the NMT system.

parameters of the target network are used to compute the estimated Q-value of the

future state. The parameters of the main network are updated more frequently than

the ones of the target network with the parameters from the former being copied to

the latter every n updates (this is called the target update period). Additionally,

deep Q-learning uses an experience replay which stores all action, state and reward

triples. When a network needs to be trained, it samples a batch from this buffer to

train and update its parameters.

4.2 Methods

4.2.1 Characterizing noise

The attribute we choose to learn a curriculum over is noise. To determine a per-

sentence noise score, we use the contrastive data selection (CDS) method defined in
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W. Wang, Watanabe, et al. (2018a). Given the parameters θn of an NMT model

trained on a noisy corpus, and parameters θc of the same model fine-tuned on a very

small trusted (clean) corpus, the score s(e, f) for a translation pair e, f is defined as:

s(e, f) = log pθc(f |e)− log pθn(f |e) (4.2)

Hence, CDS scores are essentially the conditional log-likelihood that an example

comes from the clean data distribution. W. Wang, Watanabe, et al. (2018a) show

that this heuristic correlates very well with human judgments of data quality. They

use the CDS score in a heuristic, online schedule that slowly anneals from sampling

mini-batches from all the training data to sampling only from the highest-scoring

(cleanest) data. Our goal is to replace this heuristic curriculum with a learned one.

4.2.2 Q-learning for NMT Curricula

Our agent uses deep Q-learning (DQN) (Mnih et al., 2015) which is a model-

free reinforcement learning procedure. The agent receives an observation from the

environment and conditions on it to produce an action which is executed upon the

environment. It then receives a reward representing the goodness of the executed

action. The agent chooses actions according to a state-action value (Q) function, and

attempts to learn the Q-function so as to maximize expected total rewards.

In our setup, the environment is the NMT system and its training data, as illus-
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Figure 4.2: Linearly-decaying ϵ-greedy exploration.

trated in Figure 4.1. We divide the training data into a small number of equal-sized

bins according to CDS scores. At each step, the agent selects a bin (action) from

which a mini-batch is sampled to update the NMT model.

4.2.3 Exploration Strategy

Our RL agent must balance exploration (choosing an action at random) versus

exploitation (choosing the action which maximizes the Q-function). In our setup,

this is done using a linearly-decaying ϵ-greedy exploration strategy (Figure 4.2). This

strategy has three phases: (1) The warmup period where we always explore; (2) the

decay period where the probability of exploration decreases and exploitation increases;

(3) the floor where we almost always exploit. Since we do not want to exploit an
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uninformed Q-function, the duration of exploration needs to be set carefully.

In our experiments, we found that longer decays were useful and the best per-

formance was achieved when the decay was set to about 50% of the expected NMT

training steps.

4.2.4 Observation Engineering

The observation is meant to be a summary of the state of the environment. The

NMT parameters are too numerous to use as a sensible observation at each time

step. Inspired by J. Wu, Li, and W. Y. Wang (2018), we propose an observation

type which is a function of the NMT system’s current performance at various levels

of noise. We first create a prototype batch by sampling a fixed number of prototypical

sentences from each bin of the training data. At each time step, the observation is

the vector containing sentence-level log-likelihoods produced by the NMT system for

this prototype batch.

Since the observations are based on likelihood, a metric that aggressively decays

at the beginning of NMT training, we use an NMT warmup period to exclude this

period from RL training. Otherwise, the initial observations would be unlike any that

occur later.
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(a) Perplexity (b) Delta-perplexity

Figure 4.3: Average rewards received by agent over time with the perplexity and
delta-perplexity rewards.

4.2.5 Reward Engineering

Our objective is to find a curriculum which maximizes the likelihood of the NMT

system under a development set. The RL reward that directly corresponds to this goal

would be the highest likelihood value reached during an NMT training run. However,

as we use only one NMT training run, having a single reward per run is infeasible. To

provide a denser signal to the RL agent, we define the reward (r) at a step to be the

change in likelihood since the most recent previous step for which development-set

likelihood is available. This has the desired property that the sum of per-step rewards

maximized by the RL agent is equal to the NMT maximum-likelihood objective (on

development data). We rely on the NMT warmup period described in the previous

section to eliminate spuriously large rewards at the beginning of training.

Specifically, this reward naturally decays over time as NMT training proceeds. A

sub-optimal action by the agent may hence receive a larger reward simply by being
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executed at the beginning of training. This may lead to optimal actions receiving

diminished rewards later in training compared to sub-optimal actions receiving larger

rewards at the beginning. To combat this, the actual reward function (r̂) we use

measures the improvement with respect to the average reward received in the recent

past.

r̂t = rt −
1

w

t−1∑︂
i=t−w

ri (4.3)

where rt is the actual reward received and r̂t is the modified reward (delta-perplexity).

Figure 4.3 shows the average reward received by agents over time with these two

schemes.

4.3 Experimental Setup

Our NMT model is similar to RNMT+ (M. X. Chen et al., 2018), but with only

four layers in both encoder and decoder. Rewards (dev-set log-likelihood) are provided

approximately every 10 training steps by an asynchronous process. An asynchronous

evaluation process provides us with the log-likelihood of the development set with

respect to the model parameters which determines our reward. With two evaluation

processes running in parallel on two GPUs, we are able to obtain reward every ten

steps on average although this frequency is not deterministic.
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Figure 4.4: The RL agent’s interface with the NMT system for Q-learning.

We use the DQN agent implementation in Dopamine,1 which includes an experi-

ence replay buffer to remove temporal correlations from the observations, among other

DQN best practices2. The RL-agent and NMT interface with the flow of control is

shown in Figure 4.4 and is described next.

We begin by getting the observation by passing the prototype batch to the NMT

system. The Q-learning agent uses this observation and its exploration strategy to

determine the next action, the selection of a bin. A mini-batch is sampled from

this bin and passed on to the NMT system for training. Due to the sparse and
1github.com/google/dopamine
2The Q-learning hyperparameters used in the experiments reported here are included in the

appendix.
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asynchronous nature of our rewards, we store observation, action transitions in a

temporary buffer (interface buffer in Figure 4.4) until a new reward arrives. At this

point, transitions are moved from the temporary buffer to the DQN agent’s replay

buffer. The RL agent is trained after each NMT training step by sampling an RL

mini-batch from the replay buffer. Our RL hyper-parameter settings are listed in the

appendix.

Following W. Wang, Watanabe, et al. (2018a), we use the Paracrawl and WMT

English-French corpora for our experiments. These contain 290M and 36M training

sentences respectively. WMT is relatively clean, while a large majority of Paracrawl

sentence pairs contain noise. We process both corpora with BPE, using a vocabulary

size of 32k. Both corpora are split into 6 equal-sized bins according to their noise level,

as provided by CDS score. In both settings, the WMT newstest 2010-2011 corpus

is used as trusted data for CDS scores, which are computed using the models and

procedure described in W. Wang, Watanabe, et al. (2018a). For the prototype batch

used to generate observations, we extracted the 32 sentences whose CDS scores are

closest to the mean in each bin, giving a total of 192 sentences. We use WMT 2012-

2013 for development and WMT 2014 for test, and report tokenized, naturally-cased

BLEU scores from the test checkpoint closest to the highest-BLEU dev checkpoint.

To combat variance caused by sampling different batches per bin (which produces

somewhat different results even when bins are visited in fixed order), all models were

run twice with different random seeds, and the model with the best score on the dev
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Paracrawl WMT
Uniform baselines

Uniform 34.1 37.1
Uniform (6-bins) 34.8 -

Uniform (bookends) 35.0 34.8
Heuristic baselines

Filtered (20%/33%) 37.0 38.3
Fixed ϵ-schedule 36.9 37.7

Online 37.5 37.7
Learned curricula

Q-learning (bookends) 36.8 36.3
Q-learning (6-bins) 37.5 38.4

Table 4.1: BLEU scores on Paracrawl and WMT En-Fr datasets with uniform, heuris-
tic and learned curricula.

set was chosen. 3.

4.4 Results

Our results are presented in Table 4.1. Uniform baselines consist of:

• Uniform – standard NMT training

• Uniform (6-bins) – sample a bin uniformly at random, and then sample a mini-

batch from that bin

• Uniform (bookends) – as Uniform (6-bins) but uniformly sampling over just the

best and worst bin.

Surprisingly, 6-bins performs better than the standard NMT baseline on Paracrawl
3The best RL-models were also, run an additional 2 times to verify the sanctity of the results.
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English-French. We hypothesize that this can be attributed to more homogeneous

mini-batches.

Heuristic baselines are:

• Filtered – train only on the highest-quality data as determined by CDS scores:

top 20% of the data for Paracrawl, top 33% for WMT.

• Fixed ϵ-schedule – we use the ϵ-decay strategy of our best RL experiment, but

always choose the cleanest bin when we exploit.

• Online – the online schedule from W. Wang, Watanabe, et al. (2018a) adapted

to the 6-bin setting. We verified experimentally that our performance matched

the original schedule, which did not use hard binning.

Learned curricula were trained over 2 bookend (worst and best) bins and all 6

bins. On the Paracrawl dataset, in the 2-bin setting, the learned curriculum beats all

uniform baselines and almost matches the optimized filtering baseline.4 With 6-bins,

it beats all uniform baselines by up to 2.5 BLEU and matches the hand-designed

online baseline of W. Wang, Watanabe, et al. (2018a). On WMT, with 2 bins, the

learned curriculum beats the 2-bin baseline, but not the uniform baseline over all data.

With 6 bins, the learned curriculum beats the uniform baseline by 1.5 BLEU, and
4The clean data available in the 2-bin setup is limited to the best bin (16%), while filtering uses

slightly more data (20%).
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Reward
Observation Default Fixed

Default 37.5 37.5
Fixed 32.5 -

Table 4.2: BLEU scores on ablation experiments with fixed rewards or observations
on the Paracrawl En-Fr dataset.

matches the filtered baseline, which in this case outperforms the online curriculum

by 0.6 BLEU.

Our exploration strategy for Q-learning (see Figure 4.2) forces the agent to visit

all bins during initial training, and only gradually rely on its learned policy. This

mimics the gradual annealing of the online curriculum, so one possibility is that the

agent is simply choosing the cleanest bin whenever it can, and its good performance

comes from the enforced period of exploration. However, the fact that the agent beats

the fixed ϵ-schedule (see Table 4.1) described above on both corpora makes this an

unlikely explanation of its performance.

4.5 Analysis

4.5.1 Information in observations and rewards

Task-specific reward and observation engineering is critical when building an RL

model. We performed ablation experiments to determine if the rewards and obser-

vations we have chosen contain information which aids us in the curriculum learning
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task. Table 4.2 shows the results of our experiments. The fixed reward experiments

were conducted by replacing the default delta-perplexity based reward with a static

reward which returns a reward of one when the cleanest bin was selected and zero

otherwise. The fixed observation experiments used a static vector of zeroes as in-

put at all time steps. Using fixed observations matches the performance of dynamic

observations, from which we can draw two conclusions. First, the agent’s good per-

formance is due to associating higher rewards with better bins, but it learns to do so

slowly (partly modulated by its ϵ-greedy schedule) so that it avoids the sub-optimal

strategy of choosing only the best bin. Second, its ability to distinguish among bins

is not impeded by the use of an observation vector that slowly evolves through time

and never returns to previous states.

4.5.2 What did the agent learn?

Figures 4.5, 4.6 and 4.7 show a coarse visualization of the hand-optimized policy

of W. Wang, Watanabe, et al. (2018a), adapted to our 6-bin scenario, compared

to the Q-learning policy on the the Paracrawl and WMT English-French datasets.

Each column in the figures represents the relative proportion of actions taken (bins

selected) averaged over a thousand steps and the actions go from noisy to clean on

the y-axis. Each policy starts from a uniform distribution over actions. The former

(online), by design, telescopes towards the clean bins. Note that the latter (agent

learned) policy is masked by the agent’s exploration schedule, which slowly anneals
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(a) Online

(b) RL learned

Figure 4.5: Online policy from W. Wang, Watanabe, et al. (2018a) compared to the
RL policy. Each color/pattern represents a bin (blue is the noisiest bin, dark red is
the cleanest; bins lower on the vertical axis contain more noise) and length along the
vertical axis is proportional to the number of times each bin was selected at a given
step during training.
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(a) Telescoping

(b) RL learned

Figure 4.6: Policies learned by the RL agent on the WMT En-Fr corpus compared
against the telescoping policy from W. Wang, Watanabe, et al. (2018a). Lower bins
on the vertical axis contain more noise.
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(a) RL Learned (Paracrawl)

(b) RL learned (WMT)

Figure 4.7: Policies learned by the RL agent on the 2-bin task on the Paracrawl and
WMT En-Fr datasets. Lower bins on the vertical axis contain more noise.
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toward nearly complete policy control, beginning at step 30,000. After this point, the

learned policy takes over and continues to evolve.

Some salient aspects of the learned policies are listed below.

1. All learned curricula differ significantly from the hand-designed policies.

2. The RL curriculum learned for Paracrawl (Figure 4.5) focus on two bins during

exploitation (choose action using the trained Q-function). Surprisingly, these

are not the two cleanest bins but a mixture of the cleanest and the second-to-

noisiest bin. We hypothesize that returning to the noisy bin acts as a form of

regularization, though this requires further study5.

3. The RL curriculum learned for WMT (Figure 4.6) is closer to a uniform dis-

tribution over actions for a long duration. This makes sense since the data

from WMT is mostly homogeneous with respect to noise. When the agent does

decide to exploit some bins more often, they are not the cleanest ones, but the

1st and 4th bin instead.

4. Figure 4.7 shows the policies learned on the bookend task for Paracrawl and

WMT; the only two bins available contain the noisiest and cleanest portion of

the corpus. The RL agent very quickly learns that there is an optimal bin to

choose in this task and converges to consistently exploiting it. We consider this

a sanity check of curriculum learning methods.
5As an example, we could force the model to train on only the cleanest bin once exploitation has

started and compare against this experiment to verify this hypothesis.
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Figure 4.8: Sparsity of observations: Density of 2-bin mean of observations.

4.5.3 Sparsity of observations

A concern in trying to learn a policy from observations stemming from a single

NMT run is that we may not receive enough samples in the space of possible ob-

servations. Figure 4.8 shows the density of the mean of observations in the 2-bin

experiment on the Paracrawl dataset (Figure 4.7). The observations in this experi-

ment settle into a fairly stable region after about 15000 steps. While it is interesting

to ask if it is possible to significantly change the agent’s belief in this stable region, an

alternate approach which gathers observations from multiple training runs to cover

more of the observation space may have greater success.
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4.5.4 Dealing with instability

Q-learning and reinforcement learning in general are known to be unstable at

times. While the changes proposed in Mnih et al. (2015) address some of these

concerns, our learning scenario has unique problems which may make this problem

worse. Specifically, the first time the agent is trained, the first batch (observation,

action, reward) from the replay buffer determines a starting state for the agent. Given

that exploration is expensive, an adversarial batch could put the best solution beyond

reach. We suggest bootstrapping the agent by training it on multiple samples when

its training begins to reduce the variance in the starting state.

4.6 Synopsis

In this chapter, we present a method which learns a curriculum for presenting

training samples to an NMT system. This is in contrast to the approaches explored

in Chapter 3 which were hand-designed; we use a state-of-the-art hand-designed cur-

riculum as our baseline in this work. Using reinforcement learning, our approach

learns the curriculum jointly with the NMT system during the course of a single

NMT training run. Empirical analysis on the Paracrawl and WMT English-French

corpora shows that this approach beats the uniform sampling and filtering baselines.

In addition, the learned curriculum is able to match a state-of-the-art hand designed

curriculum on Paracrawl and outperform it on the WMT dataset.
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We see this a first step toward enabling NMT systems to manage their own training

data. Two extensions to this work involve enabling the use of features other than

noise (possibly multiple features) and dealing with the sparsity of observation problem

(section 4.5.3). We tackle the former in Chapter 6 and address the latter in Chapter 5

by gathering observations from multiple training runs to learn more informed policies

in the context of multi-lingual training.
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Chapter 5

Learning Policies for Multilingual

Training of Neural Machine

Translation Systems

So far, we have explored hand-designed curricula and attempted to learn cur-

ricula jointly with training the NMT system. While both these approaches show

improvements in convergence speed and/or translation quality, they come with their

drawbacks. The former is hard to tune, relying on extensive trial and error to find the

right hyperparameters, while the latter may suffer from observation sparsity, mainly

because a single training run does not provide enough data sampling opportunities

for an external agent to learn a good curriculum.

In this chapter, we build upon the framework for learning curricula established in
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the previous chapter. To alleviate the problem of observation sparsity, we will attempt

to learn more robust policies from multiple training runs. While we stay within the

reinforcement learning framework to learn these policies, we will use contextual multi-

arm bandits instead of Q-learning for our agents, since they are computationally less

expensive to train. Additionally, we now add in some simple policy search methods to

our list of baselines; specifically, we try and find the best policies using the expensive

grid search and pruned-tree search methods. However, the state-of-the-art hand-

designed curricula are still the baselines to beat.

In the previous chapter, we examined techniques for dealing with noise in datasets

and while that is one typical characteristic of NMT training data, we would like to

verify if these techniques work on other NMT tasks such as multilingual training,

where the sample characteristic is the identity of the language-pair. Therefore, the

NMT task of choice in this chapter will be low-resource multi-lingual NMT (MNMT).

While standard NMT systems typically deal with one language pair, the source and

the target, an MNMT model may have multiple languages as source and/or target.

Most large-scale MNMT models are trained using some form of model parameter

sharing (M. Johnson, Schuster, Quoc V. Le, et al., 2017b; Aharoni, M. Johnson,

and Firat, 2019; Arivazhagan et al., 2019; Bapna and Firat, 2019). The notion of

how input data should be presented to the MNMT system during training only finds

prominence in the case of low-resource MNMT. A typical low-resource task will try

to leverage a high-resource language pair to aid the training of an NMT system for
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a low-resource (very small or no parallel data available) and related language-pair of

interest. Typical approaches for low resource MNMT involve pivoting and zero-shot

training (Lakew et al., 2018; M. Johnson, Schuster, Quoc V. Le, et al., 2017b) and

transfer learning via fine-tuning (Zoph et al., 2016; Dabre, Fujita, and Chu, 2019).

Finn, Abbeel, and Levine (2017) attempt to meta-learn parameter initialization for

low-resource models using auxiliary-high resource models for this task.

Building upon the task and datasets established by Guzmán et al. (2019), we will

attempt to learn a curriculum to train an NMT system for Nepali-English translation

while leveraging the high resource Hindi-English pair. The agent will learn to choose

between mini-batches containing either Hindi-English or Nepali-English data at each

time step during NMT training to maximize the expected reward (improvement in

validation set performance)1. The learned curriculum will hence condition on the

state of the NMT system during training and determine whether to expose it to a

batch of Nepali-English or Hindi-English data. Portions of the work described below

appear in G. Kumar, Koehn, and Khudanpur (2021b). We begin with an introduction

to contextual multi-arm bandits and our methodolgy for training them.
1Note that while this scenario may seem similar to the bookends task from the previous chapter,

the latter contained one subset of data which was clearly sub-optimal for training, while in this case,
both bins (Nepali-English) and (Hindi-English) have samples which, when trained on, can improve
translation performance for the Nepali-Hindi language pair.

65



CHAPTER 5. LEARNING POLICIES FOR MULTILINGUAL TRAINING

5.1 Background

Let us assume that we have an agent operating upon an environment. At each

time step, t, the agent receives a representation of the state of the environment, the

observation ot, and must choose to take some action at ∈ A from a set of possible

actions {a(1), · · · , a(m)}. Based on the action which was chosen by the agent and then

executed on the environment, we receive a real-valued reward, rt. Note that the agent

does not receive a reward for actions which it did not take. Our goal is to maximize

the cumulative reward over time over a possibly infinite time horizon.

Contextual multi-arm bandits (Pandey et al., 2007; Chih-Chun Wang, Kulkarni,

and Poor, 2005; Langford and T. Zhang, 2008), build a model for P (r|a, o) from the

observed (o, a, r) triples based on its interaction with the environment. As mentioned

before, since the agent only receives rewards for the actions which it takes, and since

at the beginning of training, the agent does not have a good model for P (r|a, o),

we need to use an exploration-strategy. The two commonly used strategies, epsilon-

greedy (Tokic and Palm, 2011) and Thompson sampling (W. R. Thompson, 1933),

balance exploration (choosing random actions) and exploitation (using the learned

policy) to address these problems.

These contextual bandits are typically trained using the EXP3 (Auer et al., 2003)

algorithm which maximizes the cumulative reward received by the agent, while min-

imizing regret (the difference in reward for the chosen action versus the best action

for a time step; this is also called weak regret. An alternate version of training these
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Figure 5.1: The multi-arm bandit agents’ (MAB) interface with the NMT system.

bandits (and the one we use for this work) appears in Collier and Llorens (2018).

They use multi-layer feed-forward networks to model P (r|a, o) and choose an action

(based on the exploration policy) which has maximum reward under this model. In

our work, at each time step, the model is trained on a new batch of training data

from its historical interaction with the environment.

5.2 Methods

5.2.1 Overview

The procedure for learning a two-bin policy for multi-lingual training will be

similar to the one introduced in the last chapter. However, instead of using a single

agent’s experience in interacting with the environment (the NMT system), we will use
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multiple multi-arm bandits which explore independent of each other and effectively

learn their own policies. The stochastic nature of the exploration policy will ensure

that they explore different spaces in the observation-reward space. This is done to

address the observation sparsity issue which comes up in Q-learning (Mnih et al.,

2015). Figure 5.1 shows an overview of this interface. The training data for all

agents is pooled at the end of the training of individual agents and one final agent is

trained using this data which determines the final policy we use as our multi-lingual

curriculum.

5.2.2 Data Binning

Instead of mixing together all the language pairs into one single dataset, we create

separate batches for each language pair. Hence, with respect to the agent, this is a

two bin problem, where its action is the choice of the bin to draw a mini-batch. As a

result of this design decision, each batch will only contain a single language pair. More

generally, this can be extended to an arbitrary number of bins, one per language-pair

being used to train the MNMT system.

5.2.3 Observation Engineering

The observations provided to the multi-arm bandits are identical to the ones in-

troduced in the previous chapter (Section 4.2.4). A prototype batch is sampled per
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bin (language-pair) and concatenated together. At each time step, the observation is

the vector containing sentence-level log-likelihoods produced by the NMT system for

this prototype batch. We exclude observations from the initial portion of NMT inter-

action to counteract the naturally decaying property of log-likelihood scores during

NMT training.

5.2.4 Grid-search baselines

The simplest (albeit expensive to find) search-based learn-able curriculum to con-

sider in this case is one where we sample batches from one language with a fixed

probability or else sample from the other bin during training. Since there is only one

degree of freedom in this search problem, we perform a simple line-search over the

range of possible values for this probability. Note that, although this curriculum is

‘learned’ it remains fixed during training and does not change based on the state of

the NMT system.

5.2.5 Pruned Tree search

A variation of the previous search method involves one which uses a technique

similar to beam search. We divide training into a finite number of phases and then

starting from the beginning of training, we search for the best fixed sampling prob-

ability. At the end of this phase, we discard all but the best model and the policy
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Algorithm 1: Pruned tree-search for multi-lingual curricula search
Result: P ∗, the list of the best policies per phase
p̂ = {0.0, 0.1, · · · , 1.0} // Policies to explore;
Randomly initialize starting NMT model Θ∗;
while NMT next training phase t exists do

for p in p̂ do
Bin sampling probablity = p;
Training start checkpoint = Θ∗;
Run training of NMT training for phase t;
Store trained model checkpoint θ

end
Select model θ∗ with best score on validation set with policy p∗;
P ∗ = P ∗ + [(t, p∗)];
Θ∗ = θ∗;

end

which led to it, and continue the search for the best policy in the next phase from this

model checkpoint. The result is a tree-search which prunes all but the best node after

each phase. The final policy is the culmination of all phase-wise best fixed sampling

ratios. This procedure appears in Algorithm 1. Note that a non-pruned version of

this tree-search may yield an oracle sequence of bin selections (best bin at each phase)

for the assumption that the best bin only changes at the end of the phase. However,

this would require a search over an exponential number of nodes in the search tree.

Hence, in a manner similar to beam search, we approximate this with this pruned

search tree.
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5.2.6 Contextual Multi-arm Bandits

Multi-arm bandit (MAB) based agents are typically trained to learn policies which

maximize the expected reward received (minimize regret). Contextual multi-arm

bandits (Pandey et al., 2007; Chih-Chun Wang, Kulkarni, and Poor, 2005; Langford

and T. Zhang, 2008) allows the use of state based information to determine this policy.

In our case the contextual MABs condition on the observation received from the NMT

system to determine an action, the choice of bin to sample a mini-batch. The reward

obtained for this action is the delta-validation perplexity post update as described in

the previous chapter (Section 4.2.5). The exploration strategy is the linearly-decaying

epsilon-greedy one, described in Section 4.2.3. The contextual MABs are implemented

as simple feed-forward neural networks which take the observation vector as input

and produce a distribution over two states representing the bins. If we choose to

exploit this learned policy, the bin with maximum expected reward is selected for

sampling.

5.3 Experiment Setup

We use Fairseq (Ott et al., 2019) for all the NMT experiments and the our NMT

systems are configured to replicate the setup described in Guzmán et al. (2019). The

grid search experiments search over the the range [0, 1] for sampling in increments

of 0.1. The pruned tree-search uses a beam width of 1. The phase duration for
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Dataset Sentences Tokens
Nepali-English 563K 6.8M
Hindi-English 1.6M 16.7M

Table 5.1: Statistics of the training data for the Nepali-Hindi-English multilingual
NMT system.

tree-search is set to one epoch of NMT training. We use either 5 or 10 concurrent

contextual MABs which are implemented as two 256-dimensional feed forward neural

networks. Further details about the hyperparameters for the contextual MABs are

available in the appendix (Chapter 8). Rewards for the agent (validation delta-

perplexity) are provided every ten training steps2.

We use the datasets provided as part of the FLORES task (Guzmán et al., 2019)

for our experiments. The statistics of the training dataset for the multi-lingual task

appear in table 5.1. The Hindi-English dataset comes from the IIT Bombay corpus3.

The validation and test sets for Nepali-English (the low resource language-pair of

interest) contain 2500 and 3000 sentences respectively.

5.4 Results

Our results are presented in Table 5.2. Our baselines consist of:

• ne-en random baseline: This is the NMT setup which is only trained on the
2As an example, if the current policy dictates that the sampling probability for Nepali-English is

0.2 (and for Hindi-English is 0.8) then, the NMT model is updated 10 times using batches sampled
based on these probabilities. The resulting model is then used to evaluate the validation set to
compute the reward.

3http://www.cfilt.iitb.ac.in/iitb_parallel
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valid test
Baselines

ne-en: Random Baseline 6.35 7.71
hi-en: Random baseline (with ne valid) 2.71 3.9
ne-hi-en: Random Baseline 12.24 14.88
ne-hi-en: Multi-lingual Transformer 12.01 14.78
ne-hi-en: Continued training from hi-en 12.2 14.3

Searched Curricula
Grid Search (best = 50/50) 12.01 14.78
Grid Search (best = 50/50) + Continued training 12.33 15.1
Pruned Tree-search 12.3 14.8
Pruned Tree-search + Continued training 12.41 14.92

Agent Learned Curricula
MAB1 (best = 10 concurrent, 500 updates) 12.21 14.87
MAB2 (best = 5 concurrent, 2 epochs) 12.18 14.67

Table 5.2: BLEU scores for the Nepali-English test set using the fixed, searched and
learned multilingual curricula.

Nepali-English corpus. The data is randomly shuffled to form mini-batches.

• hi-en random baseline: The NMT system trained on the high-resource Hindi-

English dataset with the Nepali-English validation and test sets.

• ne-hi-en random baseline: The Hindi-English and Nepali-English data is mixed

together to train the NMT system. The Nepali-English data is upsampled to

match the size of the the Hindi-English corpus. This is roughly identical to sam-

pling the Hindi-English and Nepali-English corpora with the same probability

except for the fact that the resulting batches in this case are not homogeneous

with respect to language-pair identity.

• Multilingual transformer: Replicates the setup from Guzmán et al. (2019).
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• Continued training baseline: Uses the hi-en random baseline as a starting point

and continues to fine tune on the Nepali-English training data using the Nepali-

English validation and test sets.

Our non-MAB search-based curriculum baselines are:

• Grid search: A static curriculum is learned by searching over the space of sam-

pling probabilities for the bins.

• Grid Search + Continued training: The previous model is fine tuned using the

Nepali-English validation and test sets.

• Pruned tree-search: Epoch-dependent curriculum searched using the pruned

tree-search method.

• Pruned tree-search + Continued training: The previous model is fine tuned

using the Nepali-English validation and test sets.

From Table 5.2, we see that the ne-en and hi-en baselines are very weak, with the

latter lagging behind despite having access to more data. This indicates that with

these language pairs, even though using the high-resource dataset may be worth some-

thing, if no low-resource data is available, it is not a good proxy for the low-resource

pair. The random baseline with the combination of the two datasets (upsampled low-

resource) is the strongest amongst the fixed baselines marginally beating the multi-

lingual transformer and the (surprisingly) the continued training baselines. While
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Figure 5.2: BLEU scores for the Nepali-English validation and test set at various
values of the ne-en sampling probability.
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valid test
MAB (5 concurrent, 500 updates) 12.2 14.11
MAB (10 concurrent, 500 updates) 12.21 14.87
MAB (5 concurrent, 1 epoch) 11.44 13.98
MAB (5 concurrent, 2 epoch) 12.18 14.67
MAB (10 concurrent, 500 updates) + sampled valid reward 12.18 14.23
MAB (5 concurrent, 2 epoch) + sampled valid reward 12.21 14.5

Table 5.3: BLEU scores for the Nepali-English test set using various configurations
of the contextual MABs to learn the multilingual sampling curriculum.

the grid search and pruned-tree search baselines are close in performance to the best

fixed baselines, continued training with them provides much stronger results where

the 50/50 configuration for the grid search provides the best result at 15.1 BLEU and

the tree search slightly behind at 14.92 BLEU. Figure 5.2 shows the BLEU scores for

the grid search experiments over the chosen search points in the probability space.

For the contextual MABs, we use either 5 or 10 concurrent agents (training data

is gathered from all concurrent bandits to train the final curriculum). In addition,

we choose to update the bandit policy only once every 500 updates, 1 epoch or 2

epochs of NMT training. The results of all our experiments appear in table 5.3

and the best configurations are in table 5.2. While the curricula learned using the

contextual MABs are able to match the performance of the strongest fixed policy

(ne-hi-en random baseline), it performs slightly worse than the curriculum obtained

using the (expensive) grid search combined with continued training, by about 0.2

BLEU points.
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5.5 Synopsis

In this chapter, we build upon the approach presented in Chapter 4 by learning

from multiple NMT training runs. On the task of low-resource multilingual NMT

training, we learn a curriculum using conditional multi-arm bandits which conditions

on the state of the NMT system and decides to either train on a batch of a high-

resource (Hindi-English) or the low-resource (Nepali-Hindi) language pair. In addi-

tion, we introduce some simple search-based methods for policy search (grid search

and pruned tree search) for this task. We show that both these simple learned curric-

ula and the ones derived from the MABs can match the state-of-the-art hand-designed

multilingual baselines. However, continued training with these learned curricula pro-

vide slightly better results, indicating that they may serve as good starting models

for fine-tuning (another possible benefit of curriculum learning).

Additionally, as discussed in Chapter 4, reinforcement learning based deep learn-

ing techniques tend to be unstable (Mnih et al., 2015) when (i) the training samples

for agent learning are correlated4 and (ii) if not enough samples are available. We

address both these concerns in this chapter by accumulating training samples for the

contextual multi-arm bandits from multiple NMT training runs and then shuffling

them to achieve decorrelation. We also use a simpler reinforcement learning frame-

work (contextual MABs vs Q-learning) for this task. These changes implemented
4We address this in Q-learning by using a replay buffer, an accumulator for the training samples,

from which samples are randomly (and not sequentially) sampled to train the agent.
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together ensured that we observed no instability in agent-learning for this task.

In the previous chapters, we have used a single proxy for sample usefulness, lin-

guistic difficulty, noise, auxiliary model score or language-id. While these have been

useful, in the next chapter, we show that a single feature may not be sufficient to

capture the notion of usefulness of a training sample to curriculum design. We pro-

pose methods which allow the use of multiple features allowing us to learn sample

usefulness and the curriculum jointly with the training of the NMT system.

78



Chapter 6

Learning Feature Weight based

Policies for Denoising Parallel

Corpora

In the previous chapters, we have relied on a proxy feature to determine sample

usefulness for training and in turn for curriculum design. In Chapter 3 we used

linguistic features and auxiliary model scores, Chapter 4 used noise based CDS scores

and Chapter 5 used language pair identity. These proxies for usefulness have shown

promise in our previous work and are a convenient way to infuse prior knowledge into

the design of a curriculum; e.g., we may hypothesize that noise based features are

the most useful ones to use when training an NMT system of a very noisy corpus.

However, we acknowledge that the notion of sample usefulness as determined by a
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single feature is an artificial one and a hard problem in itself to tackle; it may not

always be clear which single feature is a good proxy for a task. In this chapter, we

present a method which does not require a single feature to be specified but instead

can use multiple ones. The usefulness of a sample for the task, and the curriculum,

are learned jointly with the training of the NMT system. Our task of choice will be

denoising – learning a curriculum for filtering, where some samples are never presented

for training based on the learned sample usefulness score – using large noisy parallel

corpora.

Large parallel corpora such as Paracrawl (Bañón et al., 2020) which have been

crawled from online resources hold the potential to drastically improve performance

of neural machine translation systems across both low and high resource language

pairs. However, since these extraction efforts mostly rely on automatic language

identification and document/sentence alignment methods, the resulting corpora are

extremely noisy. The most frequent noise types encountered are sentence alignment

errors, wrong language in source or target, and untranslated sentences. As outlined

by Khayrallah and Koehn (2018), training algorithms for neural machine translation

systems are particularly vulnerable to these noise types. As such, these web-crawled

corpora have seen limited use in training large NMT systems.

In this chapter, we propose a method for denoising and filtering noisy corpora

that explores and searches over weighted combinations of features. During NMT

training, we score sentences and create batches using random weight vectors. These
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batches are used to train the system and measure improvement over the validation set

(reward). Finally, by modeling the weight-reward function, we learn the set of weights

which maximize reward and are used to score and filter the noisy dataset. At a high

level, this method (i) allows the use of multiple sentence level features, (ii) learns

a set of interpolation weights for the features which directly maximize translation

performance, (iii) requires no prior knowledge about which features are informative

or even if they are mutually redundant, and (iv) trains within the NMT pipeline and

does not require any special infrastructure.

We include experiments which apply this learned filtering curriculum to building

NMT systems for the noisy Estonian-English Paracrawl dataset and show that it

beats strong single feature filtering-baselines and hand-designed feature interpolation.

Additionally, we analyze the robustness of this method in the presence of specific kinds

of noise (Khayrallah and Koehn, 2018) via a controlled experiment on the Europarl

datasets. Finally, we look at the impact of transferring the learned weights from one

language pair (Estonian-English) to a noisy dataset of another language pair (Maltese-

English Paracrawl). The work presented in the chapter appears in G. Kumar, Koehn,

and Khudanpur (2021a).
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Figure 6.1: Overview of the proposed method for learning weights for sentence-level
features to filter noisy parallel data and improve translation performance.
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6.1 Methods

The proposed method centres around finding weights for combining sentence-level

features, which are then used to compute sentence-level scores and filter the noisy

corpus. While the choice of features can be arbitrary, this method’s performance will

eventually depend on their quality, and we would ideally want them to be informative

and uncorrelated.

Figure 6.1 provides an overview of the proposed method. We first train a number

of candidate neural machine translation (NMT) systems. During training for each

candidate system, we repeatedly (i) generate a random weight vector, (ii) sample a

batch of sentences from the noisy corpus based on sentence-level scores computed

using this weight vector, (iii) update NMT system parameters using this batch, and

(iv) measure the improvement in translation quality on a validation set following

this update. The weight vector w, the average feature vector ϕ of sentence-pairs in

the batch, and the improvement r on the validation set (reward) are recorded for

each batch t during the training of each candidate NMT system i, and ⟨wi,t, ϕi,t, ri,t⟩

becomes a sample in new data set D, called the tuning data set1, for learning feature

weights to maximize reward. Hence, even though the translation model parameters

of the candidate NMT systems are not used directly, they are used to gather noisy

candidate evaluations of the latent weight-feature-reward function.
1Not to be confused with the validation set which contains sentence pairs, this dataset is solely

used to model the weight-reward function and contains no sentence identity beyond feature vectors.
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Once we have D, we use a feed-forward network to learn the weight vector that

maximizes the reward. The learned weight vector w∗ is then used to compute

sentence-level scores and filter the noisy data set. The final NMT system is trained

using this clean data set.

Some subtleties in normalizing the observed rewards and learning weights are

explained below.

6.1.1 Candidate NMT runs

Note from the bottom of Figure 6.1 that the learned weight vector w∗ is used to

sort all the sentences in the noisy training data, and the top-scoring ones are used for

final NMT training. The purpose of the candidate NMT training runs is to generate

the tuning data set D from which w∗ is learned. Therefore, the setup for the candidate

runs mimics typical NMT training, but with the following differences.

1. Selecting batches: For selecting sentences to constitute a batch, we first

sample a random weight vector w of dimension |ϕ|, the number of sentence-level

features, uniformly2 from [−2.5, 2.5]|ϕ|. Ideally, we would score all sentences in

the noisy data set and then filter the top sentences to create a batch. However,

this is prohibitively slow to do for every batch. As a shortcut, we randomly

sample twice the number of sentences required to constitute the batch, score

them using the same random vector, and select the top half. For the ith sentence,
2The range of the uniform distribution represents the plausible range of weights given the features.
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the score si is a dot product of its feature vectors with the weight vector:

si =

|ϕ|∑︂
i=1

wiϕi (6.1)

The selected sentences are removed from the training pool for this epoch. This

method of batch selection ensures that the sampled weight vector determines

which sentences are selected and that their average feature vector is significantly

different from one obtained using unbiased/random selection.

2. Reward computation: The reward must represent how the choice of w (through

the sentences selected to form the batch) impacts translation performance. This

is approximated by computing the perplexity of a validation set following a pa-

rameter update with the selected batch. However, since perplexity naturally

decays in standard NMT training, batches at the beginning of the training will

naturally receive larger rewards, obscuring the impact of sentence selection. We

mitigate this effect by using delta-perplexity, i.e. the change in perplexity of

the validation set over a window of updates.

3. Accumulating training samples: For each batch t of candidate run i, we

collect the random weight vector wi,t, the batch feature vector ϕi.t, defined as the

average of the feature vectors of all sentences in the batch, and the reward ri,t.

These triples are gathered from all batches during training, across all candidate

training runs, to form the data set D for learning the feature weights.
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6.1.2 Reward Normalization

As a further way to make the rewards time-invariant with respect to NMT training,

the observed rewards ri,t are normalized with respect to an expected reward estimated

from a set of baseline NMT runs. Specifically, at each time step t, we compute the

rewards rbj,t of j = 1, . . . , J concurrent training runs—whose batches selected in the

standard manner—and, for each of the candidate NMT runs, we set

˜︁ri,t = ri,t −
1

J

J∑︂
j=1

rbj,t (6.2)

where J is the number of baseline systems used.

Going forward, we do not need to track the identity of the update which led to a

training sample, t, or the candidate system ci which produced it. Note that this leads

to the learning of a policy which is is time independent. That is, we are trying to learn

a policy which is optimal for all time steps in training. While this is appropriate for

the fixed filtering curriculum we are attempting to learn in this chapter, if we desire

a time and state dependent policy, the approaches such as the ones presented in

Chapter 4 and Chapter 5 may be more relevant.

6.1.3 Learning Feature Weights

The ith sample ⟨wi, ϕi, ˜︁ri⟩ in D may be viewed as a (noisy) evaluation of an un-

known function R(w|ϕ). This function maps a vector w to final NMT quality, given a
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fixed sentence-level feature function ϕ and the stipulation that sentences are selected

for training based on a weighted combination of their feature values using weights w.

Furthermore, if we learn this function using D, we may use the w∗ that maximizes the

learned function ˜︁RNN(w|ϕ) for our final denoising and NMT training. Specifically,

we propose to use

w∗ =argmax
w

R(w|ϕ)

≈ argmax
w

˜︁RNN(w|ϕ) (6.3)

We propose learning ˜︁RNN(w|ϕ) via a simple feed-forward neural network that

maps the weights wi to the observed reward ˜︁ri. We consider two ways of providing

input to this neural network, one that uses only the wi, and another that modulates

wi with batch quality, represented by ϕi.

1. Weight-based: We use a feed-forward network with the weight vectors wi as

input and learn to predict the observed reward ˜︁ri. Since the weight vectors inter-

act directly with the feature vectors to determine which sentences are sampled

to create a batch, we hypothesize that maximizing this weight-reward function

will produce feature weights which will lead to better sentence sampling.

2. Feature-based: Since the tuning samples are noisy evaluations of the function

R(w|ϕ), we often encounter samples where weight vectors are close in weight

space but have different rewards. To counter this problem, when using a feed-
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forward network to learn ˜︁RNN(w|ϕ), we scale the weight vector input wi by the

sum of the corresponding feature vector ϕi. This has the effect of keeping weight

vectors which have similar feature vectors close in input space and moving apart

those with significantly different feature vectors.

Once this neural network is learned from D, we perform a grid search over its input

space, as defined in Section 6.1.1, to find the maximizer of (6.3).

6.1.4 Re-sampling and training

The weight vector w∗ learned from the previous section is used to score all sen-

tences from the original noisy data set. We sort the sentences by these scores and

sample the top candidates to form the clean training data set and use it to train a

standard NMT system.

6.2 Experiment Setup

We use Fairseq (Ott et al., 2019) for our neural machine translation systems

configured to be identical to the systems described in Ng et al. (2019). The feed-

forward network used to tune weights has two 512-dimensional layers and is trained

using standard SGD using a learning rate of 0.1. The grid search for the weights was

done on the range [−2.5, 2.5] with 5000 points uniformly distributed per dimension.

The number of samples used for reward normalization (J in eqn. 6.2) was 3 and the
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window for computing the delta-perplexity reward was set to 3.

6.2.1 Corpora

We use the Paracrawl Benchmarks (Bañón et al., 2020) data set in Estonian-

English for all our experiments. These consist of documents where sentences were

aligned using Vecalign (B. Thompson and Koehn, 2019) and then de-duplicated so

that each sentence pair only occurs once in the data set. The test and validation sets

for our experiments in Estonian-English are newstest2018 and newsdev2018 respec-

tively. Statistics of these corpora appear in Table 6.1.

train valid test
Sentence Pairs 22.8m 2k 2k
Source Tokens 190m 29k 31k
Target Tokens 207m 38k 40k
Avg. Len (src) 9.8 14.5 15.3
Avg. Len (tgt) 10.7 19.1 20.1

Table 6.1: Statistics for the processed Estonian-Engligh (Es-En) Paracrawl data set
and its corresponding validation and test sets. The training corpus was filtered using
Vecalign scores; the raw corpus contains about 168m sentence pairs.

6.2.2 Features

We use five sentence-level features for all our filtering experiments. They are, (i)

IBM Model 1 alignment scores (Brown et al., 1993), (ii and iii) source and target

language model scores, (iv) dual conditional cross entropy (Junczys-Dowmunt, 2018)

and (v) sentence length ratio. We experimented with aggregate features such as

89



CHAPTER 6. LEARNING FEATURE WEIGHTS FOR DENOISING

Zipporah (Xu and Koehn, 2017), BiCleaner (Sánchez-Cartagena et al., 2018) and

bilingual features such as LASER (Schwenk and Douze, 2017) and these were used to

replicate the baselines from Bañón et al. (2020) for our dataset. The IBM Model 1

scores were obtained using the Moses (Koehn et al., 2007) pipeline. The Estonian and

English language models were trained on their respective NewsCrawl data sets3. The

clean machine translation model for computing the conditional dual-cross entropy

scores is trained on the Europarlv8 data set4. All features are Gaussianized using the

Yeo-Johnson (Yeo and R. Johnson, 2000) power transformation and then normalized

to have zero mean and unit variance.

6.3 Results

For our experiments, we scored all sentences in the noisy corpus, sorted and sam-

pled the top parallel sentences to form subsets with 10, 15 and 20 million English

words. These filtered data sets were used to train standard NMT systems and per-

formance was evaluated on the test set described in the previous section. The results

of these filtering experiments appear in Table 6.2.

First, we evaluate the efficacy of all the features we use for our interpolation task

by filtering the data set on these features alone. Additionally, to include some strong

baselines, we use three out-of-the-box, scoring features which provided strong results
3statmt.org/wmt18/translation-task.html
4statmt.org/europarl/

90

statmt.org/wmt18/translation-task.html
statmt.org/europarl/


CHAPTER 6. LEARNING FEATURE WEIGHTS FOR DENOISING

in the WMT 2020 parallel corpus filtering task5 (Bañón et al., 2020; Chaudhary et

al., 2019). These are BiCleaner, Zipporah and LASER. Of these, LASER provides

the strongest filtering and translation results beating the other two by 0.3 to 0.9

BLEU points. Of the five features we use for our experiments, dual cross-entropy

(Junczys-Dowmunt, 2018) is the strongest feature and matches the performance of

LASER. Using source or target language model scores in isolation leads to the weakest

translation performance while IBM Model 1 scores perform only slightly better than

them. Surprisingly, the simple sentence length ratio feature beats all other features

except dual cross-entropy by 1.4 to 1.6 BLEU points. This is a strong indicator of the

type of noise in the data set and that bilingual features (even simple ones) perform

better than monolingual features such as language model scores.

Next, we look at interpolation of features using weights learned using the proposed

method. As a baseline, we also include an experiment which filters based on a uniform

interpolation of the five features we use. This baseline performs worse than the

strongest single feature filtering experiments by 0.5 to 1 BLEU points. For both

the weight-based and feature-based methods of learning interpolation weights for

the features, a significant number of candidate runs are required before adequate

performance is achieved. This is not surprising, since we are searching for an optimal

weight vector in a fairly large weight space and we need a large number of samples

before a good representation of the weight-reward function can be learned. Figure 6.2
5statmt.org/wmt20/parallel-corpus-filtering.html
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10m 15m 20m
1-Feature Filtering Baselines
Zipporah 20.4 21.3 21.3
BiCleaner 19.8 20.9 21.2
LASER 21.7 22.4 22.5

IBM Model 1 18.1 19.9 20.8
Target LM 17.6 19.5 20.4
Source LM 17.4 19.4 20.4

Dual Cross-Entropy 21.5 22.4 22.6
Sentence Length Ratio 19.7 20.2 21.2

Filtering using Feature Weights
Uniform weight baseline 20.9 21.5 21.6

Weight based (14) 22.1 23.1 23.5
Feature based (15) 22.4 23.1 23.6

Table 6.2: BLEU scores for the Estonian-English NMT systems where the training
data was filtered using single features or a learned weighted combination of features.
Feature weights were learned using the proposed method. The number of candidate
runs which produced the best results appear in parentheses.

shows the improvement in BLEU scores for the weight-based approach as data from

more candidate runs in added to the tuning stage for learning weights and filtering

the data set. The performance of the final NMT system steadily improves as more

data from more systems is added and eventually converges.

Our strongest result was achieved with 14 candidate runs for the weight-based

approach for the 10, 15 and 20m setting respectively. This beat the uniform weight

baseline by 1.5 to 2 BLEU points and the strongest single feature (LASER) baseline

by 1 BLEU point. The feature based approach performed slightly better with 15

candidate runs and beat the strongest single feature baseline (LASER) by 1.3 BLEU

points.
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Figure 6.2: Improvement in BLEU scores of the final NMT system as data from
additional ‘candidate‘ training runs is added to the tuning stage to learn weights.
Training data was filtered using the learned weights.

6.4 Analysis

The following sections examine the learned weights, the effect of transferring them

to noisy corpora of a different language pair and the method’s performance when

exposed to specific kinds of noise.
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6.4.1 Learned Weights

Table 6.3 shows the weights learned using the tuning network, normalized to sum

to one. Unsurprisingly, the strongest feature (dual cross-entropy) has the highest

weight, with the sentence length ratio and IBM Model 1 (weak multi-lingual features)

drawn for the next place while source and target LM have relatively low weights.

Feature Weight Feature
IBM Model 1 0.07 0.12
Source LM 0.03 0.02
Target LM 0.02 0.02
Dual xent 0.81 0.76

Sen. Length Ratio 0.07 0.08

Table 6.3: Feature weights learned post-tuning with the weight-based and the feature-
based approaches. The weights have been normalized to sum to 1 (column).

6.4.2 Weight Transfer

Since the feature functions we use for our experiments are reasonably language-

independent, a reasonable experiment is to see if the feature weights learned on one

language-pair can be transferred to a noisy corpus of another another language pair.

However, we hypothesize that unless the feature distributions (proxy for noise profile

of the dataset) of the datasets are similar, this transfer will have limited success.

We test this hypothesis using the Maltese-English Paracrawl corpus. The training

corpus contains 26.9 million sentence pairs and was sentence aligned using Vecalign

and de-duplicated in a manner similar to our primary experiments. The validation
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and the test sets for these experiments are from the EUbookshop6 dataset and contain

3k and 2.2k sentences respectively. The sentence level features were computed using

the procedure described in Section 6.2.2 and we use the DGT corpus7 (about 1.6

million parallel sentences) to the train the clean translation models, the source and

the target language models.

1-Feature Filtering Baselines
Target LM 28.3
Source LM 27.1

Dual Cross-Entropy 32.5
Filtering using Transfer Weights
Uniform weight baseline 30.5

Weight based 31.6
Feature based 31.3

Table 6.4: BLEU scores for the Maltese-English Paracrawl NMT systems where
the training data was filtered using single features or a transferred (from Estonian-
English) weighted combination of features.

The results of these experiments appear in Table 6.4. Even though filtering with

the transferred weights beats the simpler single feature baselines, it fails to beat the

strongest one, dual cross-entropy. It is worth noting that the reason filtering with

the learned weights does this well is because the dual cross-entropy feature has the

highest weight from our previous experiments. These experiments suggest that some

form of feature distribution matching across corpora is required before weight transfer

becomes viable.
6opus.nlpl.eu/EUbookshop.php
7data.europa.eu/euodp/en/data/dataset/dgt-translation-memory
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6.4.3 Sensitivity to Noise Types

Inspired by Khayrallah and Koehn (2018), we look at how the most common noisy

types in the Paracrawl data set affect the performance of the proposed method. For

the purpose of these experiments, we use the Europarl v8 8 Estonian-English data

set. The training data set consists of about 651k parallel sentences, 11.2m source and

15.7m target tokens. We only use the feature-based method for this analysis and each

experiment tunes weights based on 5 candidate runs.

We add synthetic noise to this data set by replacing 50% of the sentences in the

data set to contain a specific kind of noise. The noise types we looked at and their

perturbation methods are described below:

1. Misaligned sentences: Since parallel corpora extraction efforts use automated

document and sentence alignment methods, noise includes source sentences

which are not aligned to the correct target sentence. To emulate this, we

randomly shuffle the source sentences of half the sentences in the clean data

set.

2. Misordered words: A result of automatic or imperfect human translation, we

add this noise to the clean data set by randomly shuffling the words within the

source sentences.

3. Wrong language: This is a very common noise type in web-crawled corpora. We
8www.statmt.org/europarl
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Noise Type % Retained
Misaligned sentences 92

Misordered words 81
Wrong language 89

Untranslated words 78

Table 6.5: The portion of the clean sentences retained after perturbing 50% of the
data set with specific noise types, learning feature weights and resampling the top
50% samples.

emulate it by performing lexical replacements (from Estonian to French).

4. Untranslated words: This other common noise type is added to our data set by

copying the source sentence to the target.

For each type of noise, we perform the following experiment: perturb 50% of the

clean data with the chosen noise type, compute feature values for the sentences in

the full data set, learn feature weights using the weight-based method described in

section 6.1, filter out the top 50% of the data set and measure the percentage of

clean (non-perturbed) sentences which were retained.9 The results of this analysis

appears in Table 6.5. The method performs significantly better than chance in all

noise categories, but given our choice of features, it is better at filtering out misaligned

sentences and sentences with tokens in the wrong language and is slightly less effective

at dealing with misordered and untranslated words.
9We note that the performance of this analysis depends on the chosen features. As an extreme

example, if we perturb the source sentences and only consider a target-side feature (such as target
language model scores), we will have no way of discriminating bad noisy samples from the clean
ones.
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6.5 Synopsis

In this chapter, we present a method which allows the use of multiple sample

features which are used to learn the sample usefulness for the task and the curriculum

for NMT training jointly. We use this method to denoise and filter noisy parallel

data for improving the performance of neural machine translation systems. We learn

interpolation weights for sentence-level features by modeling and searching over the

weight-reward space. These are used to score and filter sentences in the noisy corpora.

Our experiments with Estonian-English Paracrawl show gains of over a BLEU point

over the strongest single feature filtering and uniform weight baselines. Analysis also

shows that this method is effective at addressing the most common noise types in

web-crawled corpora.
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Conclusion

Curriculum learning hypothesizes that presenting training samples in a meaningful

order to machine learners during training may help improve model quality and conver-

gence speed. In this dissertation, we examined this framework for meta-learning in the

context of neural machine translation (NMT). Starting from an empirical exploration

of various hand-designed curricula using proxies for sample usefulness derived from

human intuition, we moved on to learning these curricula. Next, we used multiple

NMT models to learn curricula before finally allowing the use of learned usefulness

metrics in our final chapter. Figure 7.1 (also presented in the introduction of this

dissertation) is a summary of how these lines of work are connected.

We now move on to the primary research questions which were introduced at the

beginning of this thesis and examine our research and results in this context. We will

conclude with a look at some future work which can be derived from this research
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Sample Usefulness
metric

Time De-
pendent?

Curriculum
Type

Secondary
Task

Empirical Explo-
ration (Chap. 3)

Auxiliary model
scores, linguistic
features

No Hand-
Designed

Domain
Adaptation

RL-Q-Learning
(Chap. 4)

Noise CDS scores Yes Learned Denoising

Multi-lingual ban-
dits (Chap. 5)

Language ID Yes Learned from
multiple runs

Multi-lingual
translation

Reward modeling
(Chap. 6)

Learned based on
features

No Learned from
multiple runs

Filtering

Table 7.1: A summary of the work on learning curricula for NMT training.

and a few concluding thoughts.

7.1 Task dependent optimal curriculum

We consider the problem of designing an ideal curriculum for training an NMT

model and how the properties of the task and the dataset affect this design. We

showed in chapter 3 that several hand-designed curricula can match or beat the

baselines. However, this process is extremely sensitive to hyperparameters and hence

choosing the right curriculum can be a hard and expensive task. Chapter 4, , 5 and 6

show that instead of relying on a hand-designed curriculum, we can learn one from

scratch jointly with the task. In the best case, these learned curricula beat the state-

of-the-art results in translation performance and in the worst-case, they match the

baselines but still beat the hand-designed or expensive search-based baselines.
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7.2 Using human-driven design

Hand-designed curricula have seen considerable success in the training of neural

machine translation systems. Specifically, fine-tuning (or continued training) and fil-

tering are used in many state-of-the-art NMT systems. These have the advantage

that they are simple to implement and analyze. However, as we show in Chapter 3,

more popular curricula such as those based on the easy-to-hard methodology display

limited success and only after extensive tuning. In most of our work, we have hence

decided to use curricula based on human-intuition as our baselines and instead learn

these curricula jointly with the NMT training procedure. As mentioned in the pre-

vious section, we have showed through our work that it is possible to learn these

curricula which are comparable to or better than the hand-designed ones.

7.3 Sample usefulness

Finally, we consider the notion of sample usefulness for the task of training an

NMT system. Defining the notion of an easy or hard example with respect to the

training of machine learning models in general relies on proxy scores (which are gen-

erally sample features). We explored several usefulness scores, linguistic features and

auxiliary model scores in Chapter 3, noise scores in Chapter 4 and language type in

Chapter 5. We find that the features which are closest to the task at hand – e.g.,

noise scores for denoising, language id for multilingual training – are best to use when
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a single feature is being used. In Chapter 6, we show that this usefulness metric can

be learned with the curriculum as a weighted combination of several features, thus

alleviating the need to specify in advance one single feature which will serve as our

usefulness score.

7.4 Future work and final thoughts

We show through our work that curriculum learning for neural machine translation

is a promising area of research. Through the course of this inquiry, we came across

several avenues for future exploration which could possibly improve the scope and

performance of the proposed frameworks. We list the major ones below:

• Rewards, observations and exploration: All agents that learn jointly with the

NMT system require some form of feedback to generate training samples to

train themselves. In our work, we have used validation set based performance

as this reward. This is expensive to compute per update and replacing it with a

more stable or time invariant reward (X. Wang et al., 2019) may help improve

the performance of this method. Some possible ways of addressing this problem

are:

1. Sampled validation reward : Instead of measuring performance on the en-

tire validation set, we could instead sample a representative batch from the

validation set and use that to compute our reward. As a computational
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trick, concatenating this batch to the training batch could give us rewards

which are only dependent on the forward pass of the model for the previous

update in one go, at the cost of having a smaller training batch (assuming

finite GPU size) and a slightly delayed reward. The representative batch

could be fixed or changed every few epochs. Both these approaches have

limitations, the former could lead to the agent overfitting on the small val-

idation batch, and the latter could cause instability in training because of

the change in magnitude of the reward when the validation batch changes.

2. Using rewards generated from training : Similar to X. Wang et al. (2019)

who use gradient based rewards, rewards generated from the training pro-

cedure of the NMT environment could remove the need for expensive val-

idation set reward generation. However, this may lead to overfitting prob-

lems since the agent never has access to the validation set to calibrate its

performance.

3. Asynchronous reward computation: Since most reinforcement learning

models, such as Q-learning, only update their parameters every few up-

dates and even then only sample from an experience replay which may not

contain the sample for the most recent time step, an asynchronous reward

evaluation which eventually provides a reward may be sufficient. This is

similar to the approach we used in Chapter 4.

Change in environment (NMT network) parameters and their gradients may
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serve as a useful alternative among others. The observations from the NMT

system are another area where improvements could be made. The observation

is meant to be a summary of the state of the NMT system (we use log-likelihoods

of prototypical sentences) and additional work in representation learning and

model compression may be applicable here. Some possible ways of addressing

this are:

1. Use no observation: In our previous work we have tried to use variations

of Q-learning and contextual multi-arm bandits which do not require an

observation from the environment (practically, a static observation is pro-

vided at each time step). This has the effect of learning a stateless policy,

one which tries to maximize the reward the agent receives without condi-

tioning on the state of the environment and produces one optimal action

(from a state independent distribution) as a policy. We determined in

Chapter 4 that doing this resulted in loss of performance but it did result

in an improvement in training speed. This may be a relevant approach

for some tasks, especially ones where a curriculum for a relatively homo-

geneous dataset needs to be learned.

2. Use environment model parameters: Instead of relying on a hand-designed

function to compress the state (parameters) of the environment, these

parameters can be used directly. Since there are many more parameters

in the model that can reasonably be expected to serve as an observation,
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finding methods of compressing parameters or identifying the most salient

ones (e.g., final layer parameters) may be relevant.

Additionally, to minimize the number of models which the agent uses to train it-

self and to avoid observation sparsity, alternative exploration techniques (we use

linearly decaying epsilon-greedy) such as Thompson sampling (W. R. Thomp-

son, 1933) could be explored.

• Improvements in reinforcement learning: Our agents in Chapters 4 and 5 use re-

inforcement learning (RL). We explore a relatively small portion of this actively

evolving research area and any improvements from this space could improve the

performance of these proposed models.

• Computational costs: While learned curricula, especially ones that use rein-

forcement learning can alleviate the need to hand-design data input techniques,

they are computationally expensive to train. Some require training data from

many NMT runs, each of which take several days of GPU time to train. Further

exploration in effectively gathering and using this agent training data may help

lower the computational cost of curriculum learning.

• Hybrid curriculum learning: We showed in Chapter 5 that several simple search-

based curricula serve as good starting points for fine tuning. This opens up the

interesting possibility of using curriculum learning to obtain good pre-trained

models for hand-designed curricula, especially in low-resource scenarios and
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where NMT training data is extremely heterogeneous.

• Transfer learning: The prospect of transferring learned curricula from one task

to another is also an interesting one. This is especially useful in cases where a

curriculum from a high-resource task can be transferred to a low-resource task.

We explored this possibility in Chapter 6 in the context of multilingual learning

for low resource languages. This technique can be explored on other NMT tasks

and datasets.

In this dissertation, we explored curriculum learning for neural machine translation

and show that it is in fact possible to learn orderings of the training data jointly with

the NMT system to boost model performance. We see this as a first step in helping

NMT systems manage their own ever increasing and heterogeneous training data.
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Appendix

8.1 Supplementary material for chapter 3

baseline 2.84
default reverse boost reduce noshuffle

one-best score 7.1 9.2 14.7 7.8 7.8
max wd freq(de) 2.0 1.7 4.6 1.6 7.8
max wd freq(en) 7.9 0.8 8.1 5 10.8

max wd freq(deen) 4.3 2.5 4.2 2.9 2.2
avg wd freq(de) 6.5 4.1 5.5 7.5 8.8
avg wd freq(en) 2.7 6.8 2.2 2.6 5.8

avg wd freq(deen) 1.6 8.7 2.9 1.7 3.7
sent len(de) 2.4 3.0 2.9 1.6 4.6
sent len(en) 3.3 3.3 2.5 2.1 5.1

sent len(deen) 2.0 2.2 2.0 2.0 4.3

Table 8.1: Decoding performance of different curriculum learning models at the 7th
checkpoint with initial learning rate 0.0002.
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Figure 8.1: Statistics on GE-EN TED Talks training set (151,627 samples in total)
scored by different difficulty criteria. We split the training data into 5 shards. Bucket-
ing results using Jenks Natural Breaks classification algorithm are shown below each
subplot, starting from easiest shard to harder shards.
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Figure 8.2: Validation BLEU curves with initial learning rate 0.0002 for different
sample ranking criteria (part 1/2).

109



CHAPTER 8. APPENDIX

Figure 8.3: Validation BLEU curves with initial learning rate 0.0002 for different
sample ranking criteria (part 2/2).

baseline 25.1
default reverse boost reduce noshuffle

one-best score 28.6 3.7 26.5 26.3 27.8
max wd freq(de) 18.8 0.0 27.9 18.6 29.1
max wd freq(en) 0.4 26.7 0.0 8.5 0.7

max wd freq(deen)) 2.0 28.3 28.3 0.2 5.2
avg wd freq(de) 24.1 28.8 23.3 23.1 2.3
avg wd freq(en) 18.1 21.5 1.9 9.7 4.9

avg wd freq(deen) 25.2 26.4 18.5 2.0 26.4
sent len(de) 9.9 0.0 24.3 17.6 30.0
sen len(en) 26.6 18.6 5.3 26.1 24.2

sent len(deen) 1.1 14.4 24.1 26.0 24.2

Table 8.2: Decoding performance of different curriculum learning models at the 7th
checkpoint with initial learning rate 0.0008.
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Figure 8.4: Validation BLEU curves with initial learning rate 0.0002 for different
curriculum schedules.
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Figure 8.5: Validation BLEU curves with initial learning rate 0.0008 for different
sample ranking criteria (part 1/2).
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Figure 8.6: Validation BLEU curves with initial learning rate 0.0008 for different
sample ranking criteria (part 2/2).
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Figure 8.7: Validation BLEU curves with initial learning rate 0.0008 for different
curriculum schedules.
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8.2 Supplementary material for chapter 4

8.2.1 Q-learning hyper-parameters

• Observations: We sample 32 prototype sentences from each bin to create a

prototype batch of 192 sentences.

• Q-networks: The two Q-networks were MLPs with 2 x 512-d hidden layers each.

A tanh activation function was used.

• RL optimizer: We used RMSProp with a learning rate of 0.00025 and a decay

of 0.95 and no momentum.

• NMT warmup : 5000 steps (no transitions from this period are recorded).

• Stack size: We do not stack our observations for the RL agent (i.e., stack size

= 1).

• Exploration strategy : We use a linearly decaying epsilon function with decay

period set to 25k steps. The decay floor was set to 0.01.

• Discount gamma : 0.99

• Update horizon : 2

• Minimum number of transitions in replay buffer before training starts: 3000

• Update period (how often the online Q-network is trained): 4 steps

115



CHAPTER 8. APPENDIX

• Target update period (how often the target Q-network is trained): 100 steps

• The window for the delta-perplexity reward was 1.

8.3 Supplementary material for chapter 5

8.3.1 Contextual MAB hyper-parameters

• Observations: We sample 32 prototype sentences from each bin to create a

prototype batch of 192 sentences.

• MABs: We use 5 or 10 MABs which were MLPs with 2 x 256-d hidden layers

each. A tanh activation function was used.

• RL optimizer: We used RMSProp with a learning rate of 0.00025 and a decay

of 0.95 and no momentum.

• NMT warmup : 5000 steps (no transitions from this period are recorded).

• Stack size: We do not stack our observations for the RL agent (i.e., stack size

= 1).

• Exploration strategy : We use a linearly decaying epsilon function with decay

period set to 25k steps. The decay floor was set to 0.01.

• Minimum number of transitions in replay buffer before training starts: 3000
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• The window for the delta-perplexity reward was 1.
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